IE 631 Integer Programming KAIST, Spring 2023
Lecture #11: Polyhedral theory III April 4, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

e Faces,
e Redundant inequalities and facets,

e Extreme points and extreme rays.

2 Recession cone and lineality space examples

Example 11.1. Consider a polyhedron given by
P = {(.Tl,.l‘g) eR?: r1>1, 9 > 2, 1+ X2 §3}

Note that P consists of a single point (z1,z2) = (1,2) as shown in Figure 11.1. Moreover, (1,2)
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Figure 11.1: First example

satisfies the three constraints with equality. Therefore, the three constraints are implicit equalities
of P.

What is the dimension of P? As P contains a single point, we can infer that the dimension of P
is 0. Let us confirm this by looking at its affine hull. Remember that the affine hull of P is defined
simply by the set of implicit equalities. Hence,

aff (P) = {(z1,22) € R?: 21 >1, 23 >2, 21+ 29 < 3} ={(1,2)}.

The system of implicit equalities is given by

Here, the rank of A=, denoted rank(A~) = 2. Then
dim(P) =2 —rank(A7) =2-2=0.
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Example 11.2. Consider a polyhedron given by
P= {(ml,xg) ER?: gy -2y < —3}.

Note that P is a half-space as shown in Figure 11.2. The recession cone of P is given by
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Figure 11.2: Second example and its recession cone & lineality space

rec(P) = {(21,22) € R%: 21— a9 < 0}.
Moreover, the lineality space of P is given by
lin(P) = {(v1,22) €R?: z1 — 29 =0} .

In Figure 11.2, the blue line corresponds to the lineality space of P, and the half-space, including
the blue line, is the recession of P. Moreover, P has no implicit equality, so aff(P) = R?. This
means that the dimension of P is 2.

3 Faces

Let P = {m eER?: Az < b} be a polyhedron. Remember that an inequality o'z < 3 is valid for
P if every point in P satisfies the inequality. Given a valid inequality o'z < S,

Pﬂ{xeRd: aT:rzﬂ}:{mERd: Az < b, OéTfU=5}

is called the face induced by inequality o'z < 3. A face F is proper if F # () and F # P.
In Figure 11.3, there is a polyhedron in R?. There are three distinct hyperplanes, each of which
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Figure 11.3: 2-dimensional polyhedron and faces
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gives rise to a valid inequality. Valid inequality (1) defines an empty face. Valid inequality (2) defines
a 0-dimensional face because the hyperplane intersects the polyhedron at a single point. Lastly,
valid inequality (3) defines an 1-dimensional face.

In fact, we can define a face without a valid inequality. Suppose that the system Az < b consists

of m inequalities a, z < b; for i € [m].

Proposition 11.3. If F' is a nonempty face of P, then there exists M C [m] such that

i

F:{:EE]Rd: aj T =b; Yie M, a;—:ngbj Vje[m]\M}.

Consequently, F is a polyhedron.

Proof. Suppose that F is induced by a valid inequality o'z < 8. Then

B = max a'z

s.t. Az <b.

Moreover, F' is the set of optimal solutions to this linear program. As F' is nonempty, the linear
program is bounded and feasible. By strong duality, it follows that

B = min By
st. Aly=a
y > 0.

Let y* be an optimal solution to the dual linear program. Then we define M as
M={ie[m]: yj >0}.
By complementary slackness, we deduce that

F:{l’GRd: aj x=b; VieM, a;—mgbj Vje[m]\M},

i
as required. O

4 Redundant inequalities and facets

Let P = {x eER?: Az < b} be a polyhedron. Suppose that Az < b consists of m linear inequalities
al-T:C < b; for i € [m]. We say that an inequality agzv < by is redundant if the system a?x < b
for i € [m] \ {k} induces the same polyhedron P. Hence, we may remove a redudant inequality
without changing the polyhedron.

Proposition 11.4. Suppose that the face of P induced by agx < by, has dimension at most dim(P)—
2 where dim(P) is the dimension of P. Then af x < by, is redundant.

Proof. We prove the contrapositive of the statement. Suppose that agx < bi is a non-redundant
inequality. If a,I:c < b is an implicit equality, then the face induced by a,l—:c < by is P itself, which
has dimension dim(P). Thus we may assume that ag:): < by is not an implicit equality. Suppose
that M= C [m] corresponds to the set of implicit equalities and M< collects the other inequalities.
Recall that there exists & such that

ajt=b; Yie M~ and a2 <b; Vie M<.
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redundant inequalities

Figure 11.4: 2-dimensional polyhedron and redundant inequalities

In words, & strictly satisfies all constraints that are not an implicit equality.

As a;x < by, is not redundant, there exists & such that
a;j T <b; Vie[m]\{k} and a]Z > by

Then it follows that

a] T=b; Yie M=, a7 <b; Yie M<\{k}, a]Z > by
Next we consider a line segment connecting & and . For any A € [0, 1], we have

af M+ (1 =Nz)=b Yie M=, o] AT+ (1 —-Ni)<b Vie M<\{k}.
More importantly, as a;—fc < by and a;i" > by, there exists A* € [0, 1] such that
ap (VT + (1= \)2) = by

In fact, such A is given by

o b_llf_a;j _ bk—a,;r:fc € (0,1).
af (Z—2) (af@—by)+ (bp —a] 2) ’
Therefore,
=T+ (1-X\)2
satisfies

a; t* =b; Vi€ M=, a 2" <b; Yie M<\{k}, ajz*=b.

This means that M= U {k} is precisely the set of implicit equalities in the face
F:{xERd: Az <°b, agx:bk}.

As F has just one more implicit equality than P, it follows that dim(F') > dim(P) — 1. O
A facet of polyhedron P is a non-empty face of dimension dim(P) — 1.

Proposition 11.5. For each facet F' of polyhedron P, there exists an inequality a;—x < by, which is
not an implicit equality and induces the facet F.

We say that a valid inequality o'« < 3 is facet-defining for P if the face induced by the inequality
is a facet of P.



facet

facet-defining inequality

Figure 11.5: 2-dimensional polyhedron and a facet

Example 11.6. Let G = (V, E) be a graph. Then the stable set polytope is given by
stab(G) = conv {z € {0, W oz, 4z, <1forall (u,v) € E}.

Let K be a maximal clique. We learned that the clique inequality
s
vEK

is valid for stab(G). In fact, we will show that the clique inequality induces a facet of stab(G). To
prove this, it suffices to show that the face

F:stab(G)ﬂ{:Eesz vazl}.

veK

has dimension dim(stab(G)) — 1.

First of all, () and all singletons {v} for v € V are stable sets. That means stab(G) contains 0 and
e, for v € V where e, is the unit vector that has 1 in the position of v. Hence stab(G) contains
|V| 4+ 1 affinely independent points, and therefore, dim(stab(G)) = |V].

To show that F' has dimension |V| — 1, we exhibit |V| affinely independent points in stab(G). For
each v € K, {v} is a stable set, and moreover, |K N {v}| = [{v}| = 1. For each u € V' \ K, there
is a vertex w € K such that (u,w) is not an edge. This is because if u € V' \ K is connected to
all vertices in K, then we may add u to K, and the resulting set would be a clique. However, this
violates the assumption that K is maximal. In such case, as (u,w) is not an edge, {u, w} is a stable
set such that |K N {u,w}| = |[{w}| = 1. In fact,

ey forve K, e,+e, forallueV\ K and some w € K such that (u,w) is not an edge

are |V| affinely independent points in stab(G).

5 Extreme points and extreme rays
A face of dimension 0 is called a vertex or an extreme point of polyhedron P.

Theorem 11.7. Polyhedron P has a vertex if and only if P is pointed, i.e., lin(P) = {0}.
The next theorem characterizes a vertex of a pointed polyhedron P in terms of its inequality system.
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Theorem 11.8. Let P = {x € R? : Az < b} be a pointed polyhedron. Then the following
statements are equivalent.

(i) T is a vertex of P.
(ii) T satisfies d linearly independent inequalities in Az < b at equality.
(i7i) T cannot be expressed as a proper convex combination of two distinct points in P.

Here, a proper convexr combination of two points u,v mean Au + (1 — X)v for some 0 < X < 1.

A face of dimension 1 is called an edge of polyhedron P.

Theorem 11.9. Let P = {x € R? : Ax < b} be a pointed polyhedron. Then the following
statements are equivalent.

=3I

(i)

(ii) 7 satisfies d — 1 linearly independent inequalities in Az < 0 at equality.

is an extreme ray of P.

(iii) T cannot be expressed as a proper convex combination of two distinct rays in rec(P).
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