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1 Outline

In this lecture, we study

• Faces,

• Redundant inequalities and facets,

• Extreme points and extreme rays.

2 Recession cone and lineality space examples

Example 11.1. Consider a polyhedron given by

P =
{
(x1, x2) ∈ R2 : x1 ≥ 1, x2 ≥ 2, x1 + x2 ≤ 3

}
.

Note that P consists of a single point (x1, x2) = (1, 2) as shown in Figure 11.1. Moreover, (1, 2)

Figure 11.1: First example

satisfies the three constraints with equality. Therefore, the three constraints are implicit equalities
of P .

What is the dimension of P? As P contains a single point, we can infer that the dimension of P
is 0. Let us confirm this by looking at its affine hull. Remember that the affine hull of P is defined
simply by the set of implicit equalities. Hence,

aff(P ) =
{
(x1, x2) ∈ R2 : x1 ≥ 1, x2 ≥ 2, x1 + x2 ≤ 3

}
= {(1, 2)}.

The system of implicit equalities is given by

A= =

−1 0
0 −1
1 1

 .

Here, the rank of A=, denoted rank(A=) = 2. Then

dim(P ) = 2− rank(A=) = 2− 2 = 0.
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Example 11.2. Consider a polyhedron given by

P =
{
(x1, x2) ∈ R2 : x1 − x2 ≤ −3

}
.

Note that P is a half-space as shown in Figure 11.2. The recession cone of P is given by

Figure 11.2: Second example and its recession cone & lineality space

rec(P ) =
{
(x1, x2) ∈ R2 : x1 − x2 ≤ 0

}
.

Moreover, the lineality space of P is given by

lin(P ) =
{
(x1, x2) ∈ R2 : x1 − x2 = 0

}
.

In Figure 11.2, the blue line corresponds to the lineality space of P , and the half-space, including
the blue line, is the recession of P . Moreover, P has no implicit equality, so aff(P ) = R2. This
means that the dimension of P is 2.

3 Faces

Let P =
{
x ∈ Rd : Ax ≤ b

}
be a polyhedron. Remember that an inequality α⊤x ≤ β is valid for

P if every point in P satisfies the inequality. Given a valid inequality α⊤x ≤ β,

P ∩
{
x ∈ Rd : α⊤x = β

}
=

{
x ∈ Rd : Ax ≤ b, α⊤x = β

}
is called the face induced by inequality α⊤x ≤ β. A face F is proper if F ̸= ∅ and F ̸= P .

In Figure 11.3, there is a polyhedron in R2. There are three distinct hyperplanes, each of which

Figure 11.3: 2-dimensional polyhedron and faces
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gives rise to a valid inequality.Valid inequality (1) defines an empty face. Valid inequality (2) defines
a 0-dimensional face because the hyperplane intersects the polyhedron at a single point. Lastly,
valid inequality (3) defines an 1-dimensional face.

In fact, we can define a face without a valid inequality. Suppose that the system Ax ≤ b consists
of m inequalities a⊤i x ≤ bi for i ∈ [m].

Proposition 11.3. If F is a nonempty face of P , then there exists M ⊆ [m] such that

F =
{
x ∈ Rd : a⊤i x = bi ∀i ∈ M, a⊤j x ≤ bj ∀j ∈ [m] \M

}
.

Consequently, F is a polyhedron.

Proof. Suppose that F is induced by a valid inequality α⊤x ≤ β. Then

β = max α⊤x

s.t. Ax ≤ b.

Moreover, F is the set of optimal solutions to this linear program. As F is nonempty, the linear
program is bounded and feasible. By strong duality, it follows that

β = min β⊤y

s.t. A⊤y = α

y ≥ 0.

Let y∗ be an optimal solution to the dual linear program. Then we define M as

M = {i ∈ [m] : y∗i > 0} .

By complementary slackness, we deduce that

F =
{
x ∈ Rd : a⊤i x = bi ∀i ∈ M, a⊤j x ≤ bj ∀j ∈ [m] \M

}
,

as required.

4 Redundant inequalities and facets

Let P =
{
x ∈ Rd : Ax ≤ b

}
be a polyhedron. Suppose that Ax ≤ b consists of m linear inequalities

a⊤i x ≤ bi for i ∈ [m]. We say that an inequality a⊤k x ≤ bk is redundant if the system a⊤i x ≤ bi
for i ∈ [m] \ {k} induces the same polyhedron P . Hence, we may remove a redudant inequality
without changing the polyhedron.

Proposition 11.4. Suppose that the face of P induced by a⊤k x ≤ bk has dimension at most dim(P )−
2 where dim(P ) is the dimension of P . Then a⊤k x ≤ bk is redundant.

Proof. We prove the contrapositive of the statement. Suppose that a⊤k x ≤ bk is a non-redundant
inequality. If a⊤k x ≤ bk is an implicit equality, then the face induced by a⊤k x ≤ bk is P itself, which
has dimension dim(P ). Thus we may assume that a⊤k x ≤ bk is not an implicit equality. Suppose
that M= ⊆ [m] corresponds to the set of implicit equalities and M< collects the other inequalities.
Recall that there exists x̂ such that

a⊤i x̂ = bi ∀i ∈ M= and a⊤i x̂ < bi ∀i ∈ M<.
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Figure 11.4: 2-dimensional polyhedron and redundant inequalities

In words, x̂ strictly satisfies all constraints that are not an implicit equality.

As a⊤k x ≤ bk is not redundant, there exists x̄ such that

a⊤i x̄ ≤ bi ∀i ∈ [m] \ {k} and a⊤k x̄ > bk.

Then it follows that

a⊤i x̄ = bi ∀i ∈ M=, a⊤i x̄ ≤ bi ∀i ∈ M< \ {k}, a⊤k x̄ > bk.

Next we consider a line segment connecting x̄ and x̂. For any λ ∈ [0, 1], we have

a⊤i (λx̄+ (1− λ)x̂) = bi ∀i ∈ M=, a⊤i (λx̄+ (1− λ)x̂) < bi ∀i ∈ M< \ {k}.

More importantly, as a⊤k x̂ < bk and a⊤k x̄ > bk, there exists λ∗ ∈ [0, 1] such that

a⊤k (λ
∗x̄+ (1− λ∗)x̂) = bk.

In fact, such λ is given by

λ∗ =
bk − a⊤k x̂

a⊤k (x̄− x̂)
=

bk − a⊤k x̂

(a⊤k x̄− bk) + (bk − a⊤k x̂)
∈ (0, 1).

Therefore,
x∗ = λ∗x̄+ (1− λ∗)x̂

satisfies
a⊤i x

∗ = bi ∀i ∈ M=, a⊤i x
∗ < bi ∀i ∈ M< \ {k}, a⊤k x

∗ = bk.

This means that M= ∪ {k} is precisely the set of implicit equalities in the face

F =
{
x ∈ Rd : Ax ≤ b, a⊤k x = bk

}
.

As F has just one more implicit equality than P , it follows that dim(F ) ≥ dim(P )− 1.

A facet of polyhedron P is a non-empty face of dimension dim(P )− 1.

Proposition 11.5. For each facet F of polyhedron P , there exists an inequality a⊤k x ≤ bk which is
not an implicit equality and induces the facet F .

We say that a valid inequality α⊤x ≤ β is facet-defining for P if the face induced by the inequality
is a facet of P .

4



Figure 11.5: 2-dimensional polyhedron and a facet

Example 11.6. Let G = (V,E) be a graph. Then the stable set polytope is given by

stab(G) = conv
{
x ∈ {0, 1}V : xu + xv ≤ 1 for all (u, v) ∈ E

}
.

Let K be a maximal clique. We learned that the clique inequality∑
v∈K

xv ≤ 1

is valid for stab(G). In fact, we will show that the clique inequality induces a facet of stab(G). To
prove this, it suffices to show that the face

F = stab(G) ∩

{
x ∈ RV :

∑
v∈K

xv = 1

}
.

has dimension dim(stab(G))− 1.

First of all, ∅ and all singletons {v} for v ∈ V are stable sets. That means stab(G) contains 0 and
ev for v ∈ V where ev is the unit vector that has 1 in the position of v. Hence stab(G) contains
|V |+ 1 affinely independent points, and therefore, dim(stab(G)) = |V |.
To show that F has dimension |V | − 1, we exhibit |V | affinely independent points in stab(G). For
each v ∈ K, {v} is a stable set, and moreover, |K ∩ {v}| = |{v}| = 1. For each u ∈ V \K, there
is a vertex w ∈ K such that (u,w) is not an edge. This is because if u ∈ V \ K is connected to
all vertices in K, then we may add u to K, and the resulting set would be a clique. However, this
violates the assumption that K is maximal. In such case, as (u,w) is not an edge, {u,w} is a stable
set such that |K ∩ {u,w}| = |{w}| = 1. In fact,

ev for v ∈ K, eu + ew for all u ∈ V \K and some w ∈ K such that (u,w) is not an edge

are |V | affinely independent points in stab(G).

5 Extreme points and extreme rays

A face of dimension 0 is called a vertex or an extreme point of polyhedron P .

Theorem 11.7. Polyhedron P has a vertex if and only if P is pointed, i.e., lin(P ) = {0}.

The next theorem characterizes a vertex of a pointed polyhedron P in terms of its inequality system.
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Theorem 11.8. Let P = {x ∈ Rd : Ax ≤ b} be a pointed polyhedron. Then the following
statements are equivalent.

(i) x̄ is a vertex of P .

(ii) x̄ satisfies d linearly independent inequalities in Ax ≤ b at equality.

(iii) x̄ cannot be expressed as a proper convex combination of two distinct points in P .

Here, a proper convex combination of two points u, v mean λu+ (1− λ)v for some 0 < λ < 1.

A face of dimension 1 is called an edge of polyhedron P .

Theorem 11.9. Let P = {x ∈ Rd : Ax ≤ b} be a pointed polyhedron. Then the following
statements are equivalent.

(i) r̄ is an extreme ray of P .

(ii) r̄ satisfies d− 1 linearly independent inequalities in Ax ≤ 0 at equality.

(iii) r̄ cannot be expressed as a proper convex combination of two distinct rays in rec(P ).
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