1 Outline

In this lecture, we study

- Faces,
- Redundant inequalities and facets,
- Extreme points and extreme rays.

2 Recession cone and lineality space examples

Example 11.1. Consider a polyhedron given by

$$
P=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \geq 1, x_{2} \geq 2, x_{1}+x_{2} \leq 3\right\} .
$$

Note that P consists of a single point $\left(x_{1}, x_{2}\right)=(1,2)$ as shown in Figure 11.1. Moreover, (1,2)

Figure 11.1: First example
satisfies the three constraints with equality. Therefore, the three constraints are implicit equalities of P.
What is the dimension of P ? As P contains a single point, we can infer that the dimension of P is 0 . Let us confirm this by looking at its affine hull. Remember that the affine hull of P is defined simply by the set of implicit equalities. Hence,

$$
\operatorname{aff}(P)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \geq 1, x_{2} \geq 2, x_{1}+x_{2} \leq 3\right\}=\{(1,2)\}
$$

The system of implicit equalities is given by

$$
A^{=}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1 \\
1 & 1
\end{array}\right] .
$$

Here, the rank of $A^{=}, \operatorname{denoted} \operatorname{rank}\left(A^{=}\right)=2$. Then

$$
\operatorname{dim}(P)=2-\operatorname{rank}\left(A^{=}\right)=2-2=0 .
$$

Example 11.2. Consider a polyhedron given by

$$
P=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}-x_{2} \leq-3\right\}
$$

Note that P is a half-space as shown in Figure 11.2. The recession cone of P is given by

Figure 11.2: Second example and its recession cone \& lineality space

$$
\operatorname{rec}(P)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}-x_{2} \leq 0\right\}
$$

Moreover, the lineality space of P is given by

$$
\operatorname{lin}(P)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}-x_{2}=0\right\} .
$$

In Figure 11.2, the blue line corresponds to the lineality space of P, and the half-space, including the blue line, is the recession of P. Moreover, P has no implicit equality, so aff $(P)=\mathbb{R}^{2}$. This means that the dimension of P is 2 .

3 Faces

Let $P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$ be a polyhedron. Remember that an inequality $\alpha^{\top} x \leq \beta$ is valid for P if every point in P satisfies the inequality. Given a valid inequality $\alpha^{\top} x \leq \beta$,

$$
P \cap\left\{x \in \mathbb{R}^{d}: \alpha^{\top} x=\beta\right\}=\left\{x \in \mathbb{R}^{d}: A x \leq b, \alpha^{\top} x=\beta\right\}
$$

is called the face induced by inequality $\alpha^{\top} x \leq \beta$. A face F is proper if $F \neq \emptyset$ and $F \neq P$.
In Figure 11.3, there is a polyhedron in \mathbb{R}^{2}. There are three distinct hyperplanes, each of which

Figure 11.3: 2-dimensional polyhedron and faces
gives rise to a valid inequality.Valid inequality (1) defines an empty face. Valid inequality (2) defines a 0 -dimensional face because the hyperplane intersects the polyhedron at a single point. Lastly, valid inequality (3) defines an 1-dimensional face.

In fact, we can define a face without a valid inequality. Suppose that the system $A x \leq b$ consists of m inequalities $a_{i}^{\top} x \leq b_{i}$ for $i \in[m]$.

Proposition 11.3. If F is a nonempty face of P, then there exists $M \subseteq[m]$ such that

$$
F=\left\{x \in \mathbb{R}^{d}: a_{i}^{\top} x=b_{i} \quad \forall i \in M, \quad a_{j}^{\top} x \leq b_{j} \quad \forall j \in[m] \backslash M\right\} .
$$

Consequently, F is a polyhedron.
Proof. Suppose that F is induced by a valid inequality $\alpha^{\top} x \leq \beta$. Then

$$
\begin{aligned}
\beta= & \max \\
\text { s.t. } & \alpha^{\top} x \\
& A x \leq b .
\end{aligned}
$$

Moreover, F is the set of optimal solutions to this linear program. As F is nonempty, the linear program is bounded and feasible. By strong duality, it follows that

$$
\begin{aligned}
\beta=\min & \beta^{\top} y \\
\text { s.t. } & A^{\top} y=\alpha \\
& y \geq 0 .
\end{aligned}
$$

Let y^{*} be an optimal solution to the dual linear program. Then we define M as

$$
M=\left\{i \in[m]: y_{i}^{*}>0\right\} .
$$

By complementary slackness, we deduce that

$$
F=\left\{x \in \mathbb{R}^{d}: a_{i}^{\top} x=b_{i} \quad \forall i \in M, a_{j}^{\top} x \leq b_{j} \forall j \in[m] \backslash M\right\},
$$

as required.

4 Redundant inequalities and facets

Let $P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$ be a polyhedron. Suppose that $A x \leq b$ consists of m linear inequalities $a_{i}^{\top} x \leq b_{i}$ for $i \in[m]$. We say that an inequality $a_{k}^{\top} x \leq b_{k}$ is redundant if the system $a_{i}^{\top} x \leq b_{i}$ for $i \in[m] \backslash\{k\}$ induces the same polyhedron P. Hence, we may remove a redudant inequality without changing the polyhedron.

Proposition 11.4. Suppose that the face of P induced by $a_{k}^{\top} x \leq b_{k}$ has dimension at most $\operatorname{dim}(P)-$ 2 where $\operatorname{dim}(P)$ is the dimension of P. Then $a_{k}^{\top} x \leq b_{k}$ is redundant.

Proof. We prove the contrapositive of the statement. Suppose that $a_{k}^{\top} x \leq b_{k}$ is a non-redundant inequality. If $a_{k}^{\top} x \leq b_{k}$ is an implicit equality, then the face induced by $a_{k}^{\top} x \leq b_{k}$ is P itself, which has dimension $\operatorname{dim}(P)$. Thus we may assume that $a_{k}^{\top} x \leq b_{k}$ is not an implicit equality. Suppose that $M^{=} \subseteq[m]$ corresponds to the set of implicit equalities and $M^{<}$collects the other inequalities. Recall that there exists \hat{x} such that

$$
a_{i}^{\top} \hat{x}=b_{i} \quad \forall i \in M^{=} \quad \text { and } \quad a_{i}^{\top} \hat{x}<b_{i} \quad \forall i \in M^{<} .
$$

Figure 11.4: 2-dimensional polyhedron and redundant inequalities

In words, \hat{x} strictly satisfies all constraints that are not an implicit equality.
As $a_{k}^{\top} x \leq b_{k}$ is not redundant, there exists \bar{x} such that

$$
a_{i}^{\top} \bar{x} \leq b_{i} \forall i \in[m] \backslash\{k\} \quad \text { and } \quad a_{k}^{\top} \bar{x}>b_{k} .
$$

Then it follows that

$$
a_{i}^{\top} \bar{x}=b_{i} \quad \forall i \in M^{=}, \quad a_{i}^{\top} \bar{x} \leq b_{i} \quad \forall i \in M^{<} \backslash\{k\}, \quad a_{k}^{\top} \bar{x}>b_{k} .
$$

Next we consider a line segment connecting \bar{x} and \hat{x}. For any $\lambda \in[0,1]$, we have

$$
a_{i}^{\top}(\lambda \bar{x}+(1-\lambda) \hat{x})=b_{i} \quad \forall i \in M^{=}, \quad a_{i}^{\top}(\lambda \bar{x}+(1-\lambda) \hat{x})<b_{i} \forall i \in M^{<} \backslash\{k\} .
$$

More importantly, as $a_{k}^{\top} \hat{x}<b_{k}$ and $a_{k}^{\top} \bar{x}>b_{k}$, there exists $\lambda^{*} \in[0,1]$ such that

$$
a_{k}^{\top}\left(\lambda^{*} \bar{x}+\left(1-\lambda^{*}\right) \hat{x}\right)=b_{k} .
$$

In fact, such λ is given by

$$
\lambda^{*}=\frac{b_{k}-a_{k}^{\top} \hat{x}}{a_{k}^{\top}(\bar{x}-\hat{x})}=\frac{b_{k}-a_{k}^{\top} \hat{x}}{\left(a_{k}^{\top} \bar{x}-b_{k}\right)+\left(b_{k}-a_{k}^{\top} \hat{x}\right)} \in(0,1) .
$$

Therefore,

$$
x^{*}=\lambda^{*} \bar{x}+\left(1-\lambda^{*}\right) \hat{x}
$$

satisfies

$$
a_{i}^{\top} x^{*}=b_{i} \quad \forall i \in M^{=}, \quad a_{i}^{\top} x^{*}<b_{i} \quad \forall i \in M^{<} \backslash\{k\}, \quad a_{k}^{\top} x^{*}=b_{k} .
$$

This means that $M^{=} \cup\{k\}$ is precisely the set of implicit equalities in the face

$$
F=\left\{x \in \mathbb{R}^{d}: A x \leq b, a_{k}^{\top} x=b_{k}\right\} .
$$

As F has just one more implicit equality than P, it follows that $\operatorname{dim}(F) \geq \operatorname{dim}(P)-1$.
A facet of polyhedron P is a non-empty face of dimension $\operatorname{dim}(P)-1$.
Proposition 11.5. For each facet F of polyhedron P, there exists an inequality $a_{k}^{\top} x \leq b_{k}$ which is not an implicit equality and induces the facet F.

We say that a valid inequality $\alpha^{\top} x \leq \beta$ is facet-defining for P if the face induced by the inequality is a facet of P.

Figure 11.5: 2-dimensional polyhedron and a facet

Example 11.6. Let $G=(V, E)$ be a graph. Then the stable set polytope is given by

$$
\operatorname{stab}(G)=\operatorname{conv}\left\{x \in\{0,1\}^{V}: x_{u}+x_{v} \leq 1 \text { for all }(u, v) \in E\right\}
$$

Let K be a maximal clique. We learned that the clique inequality

$$
\sum_{v \in K} x_{v} \leq 1
$$

is valid for $\operatorname{stab}(G)$. In fact, we will show that the clique inequality induces a facet of $\operatorname{stab}(G)$. To prove this, it suffices to show that the face

$$
F=\operatorname{stab}(G) \cap\left\{x \in \mathbb{R}^{V}: \sum_{v \in K} x_{v}=1\right\}
$$

has dimension $\operatorname{dim}(\operatorname{stab}(G))-1$.
First of all, \emptyset and all singletons $\{v\}$ for $v \in V$ are stable sets. That means stab (G) contains 0 and e_{v} for $v \in V$ where e_{v} is the unit vector that has 1 in the position of v. Hence $\operatorname{stab}(G)$ contains $|V|+1$ affinely independent points, and therefore, $\operatorname{dim}(\operatorname{stab}(G))=|V|$.
To show that F has dimension $|V|-1$, we exhibit $|V|$ affinely independent points in stab (G). For each $v \in K,\{v\}$ is a stable set, and moreover, $|K \cap\{v\}|=|\{v\}|=1$. For each $u \in V \backslash K$, there is a vertex $w \in K$ such that (u, w) is not an edge. This is because if $u \in V \backslash K$ is connected to all vertices in K, then we may add u to K, and the resulting set would be a clique. However, this violates the assumption that K is maximal. In such case, as (u, w) is not an edge, $\{u, w\}$ is a stable set such that $|K \cap\{u, w\}|=|\{w\}|=1$. In fact,
e_{v} for $v \in K, \quad e_{u}+e_{w}$ for all $u \in V \backslash K$ and some $w \in K$ such that (u, w) is not an edge are $|V|$ affinely independent points in $\operatorname{stab}(G)$.

5 Extreme points and extreme rays

A face of dimension 0 is called a vertex or an extreme point of polyhedron P.
Theorem 11.7. Polyhedron P has a vertex if and only if P is pointed, i.e., $\operatorname{lin}(P)=\{0\}$.
The next theorem characterizes a vertex of a pointed polyhedron P in terms of its inequality system.

Theorem 11.8. Let $P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$ be a pointed polyhedron. Then the following statements are equivalent.
(i) \bar{x} is a vertex of P.
(ii) \bar{x} satisfies d linearly independent inequalities in $A x \leq b$ at equality.
(iii) \bar{x} cannot be expressed as a proper convex combination of two distinct points in P.

Here, a proper convex combination of two points u, v mean $\lambda u+(1-\lambda) v$ for some $0<\lambda<1$.
A face of dimension 1 is called an edge of polyhedron P.
Theorem 11.9. Let $P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$ be a pointed polyhedron. Then the following statements are equivalent.
(i) \bar{r} is an extreme ray of P.
(ii) \bar{r} satisfies $d-1$ linearly independent inequalities in $A x \leq 0$ at equality.
(iii) \bar{r} cannot be expressed as a proper convex combination of two distinct rays in $\operatorname{rec}(P)$.

