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1 Outline

In this lecture, we study

• Minkowski-Weyl theorem for general polyhedra.

• recession cone and lineality space.

• implicit equalities and affine hull.

2 Minkowski-Weyl theorem for general polyhedra

A set P ⊆ Rd is a polyhedron if it is defined by a finite number of linear inequalities, i.e.

P = {x ∈ Rd : Ax ≤ b}.

Hence, a polyhedron is a finite intersection of half-spaces. A polyhedron is rational if it is defined by

Figure 10.1: Polyhedron defined by three inequalities

a system of linear inequalities where all coefficients and right-hand sides are rational. A polyhedral
cone is by definition a polyhedron.

Given a polyhedron P = {x ∈ Rd : Ax ≤ b}, we can associate a polyhedral cone given by

CP =
{
(x, y) ∈ Rd × R : Ax− by ≤ 0, y ≥ 0

}
.

Then we have
P =

{
x ∈ Rd : (x, 1) ∈ CP

}
.

Given two sets Q,C ⊆ Rd, Minkowski sum of Q and C is defined as

Q+ C =
{
x = u+ v ∈ Rd : u ∈ Q v ∈ C

}
.

Based on these, we may prove the following theorem for polyhedra.
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Figure 10.2: Polyhedron as the Minkowski sum of a polytope and a polyhedral cone

Theorem 10.1 (Minkowski-Weyl theorem). A set P ⊆ Rd is a polyhedron if and only if

P = conv(v1, . . . , vp) + cone(r1, . . . , rq)

for some vectors v1, . . . , vp and r1, . . . , rq.

Proof. (⇒) Let P = {x : Rd : Ax ≤ b} be a polyhedron. Then consider the associated cone
CP =

{
(x, y) ∈ Rd × R : Ax− by ≤ 0, y ≥ 0

}
. By Minkowski-Weyl theorem for cones, there exist

vectors (u1, w1), . . . , (uk, wk) ∈ Rd × R such that

CP = cone

((
u1

w1

)
, . . . ,

(
uk

wk

))
.

By the definition of CP , we have w1, . . . , wk ≥ 0. Then each wi is strictly positive or equal to 0.
For each vector (ui, wi) with wi > 0, we divide it by wi. Then CP can be rewritten as

CP = cone

((
v1

1

)
, . . . ,

(
vp

1

)
,

(
r1

0

)
, . . . ,

(
rq

0

))

=

(x, y) ∈ Rd × R : ∃λ ≥ 0, µ ≥ 0 s.t. x =

p∑
i=1

λiv
i +

q∑
j=1

µjr
j , y =

p∑
i=1

λi


Since P =

{
x ∈ Rd : (x, 1) ∈ CP

}
, it follows that

P = conv(v1, . . . , vp) + cone(r1, . . . , rq).

(⇐) Let CP be defined as

CP = cone

((
v1

1

)
, . . . ,

(
vp

1

)
,

(
r1

0

)
, . . . ,

(
rq

0

))
.

By Minkowski-Weyl theorem for cones, we know that CP is a polyhedral cone, and therefore, CP

can be written as
CP =

{
(x, y) ∈ Rd × R : Ax− by ≤ 0

}
.

Note that P =
{
x ∈ Rd : (x, 1) ∈ CP

}
, in which case, we have

P = {x ∈ Rd : Ax ≤ b},

as required.
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A set P ⊆ Rd is a polytope if it is a polyhedron and bounded, i.e., P ⊆ [−M,M ]d for some
sufficiently large M > 0.

Corollary 10.2 (Minkowski-Weyl theorem for polytopes). A set P ⊆ Rd is a polytope if and only
if

P = conv(v1, . . . , vp)

for some vectors v1, . . . , vp.

Proof. (⇒) By Theorem 10.1, as P is a polyhedron, P = conv(v1, . . . , vp) + cone(r1, . . . , rq) for
some vectors v1, . . . , vp and r1, . . . , rq. Here, since P is bounded, we have q = 0 or r1 = · · · = rq = 0,
in which case P = conv(v1, . . . , vp).

(⇐) By Theorem 10.1, P is a polyhedron. Moreover, since P is the convex hull of a finite number
of vectors, P is bounded. Therefore, P is a polytope.

3 Recession cone and lineality space

Given a nonempty polyhedron P , a ray of P is a vector r such that

x+ λr ∈ P for all x ∈ P and λ ≥ 0.

The recession cone of P is the set of all rays of P , i.e.,

rec(P ) =
{
r ∈ Rd : x+ λr ∈ P for all x ∈ P and λ ≥ 0

}
.

Lemma 10.3. rec(P ) is a convex cone.

Proof. Let r1, r2 ∈ rec(P ). Then x+ λr1, x+ λr2 ∈ P for any x ∈ P and λ ≥ 0. Since P is convex,
for any 0 ≤ α ≤ 1, we have

x+ λ
(
αr1 + (1− α)r2

)
= α(x+ λr1) + (1− α)(x+ λr2) ∈ P.

This implies that αr1 + (1− α)r2 ∈ rec(P ), and therefore, rec(P ) is a convex cone.

A ray r of polyhedron P is called an extreme ray of P if it cannot be written as a convex
combination of two distinct rays of P .

The lineality space of P is defined as

lin(P ) =
{
r ∈ Rd : x+ λr ∈ P for all x ∈ P and λ ∈ R

}
.

Hence, the lineality space is the set of all vectors r such that both r and −r are rays of P .

Lemma 10.4. lin(P ) = rec(P ) ∩ − rec(P ).

Proof. Note that r ∈ lin(P ) if and only if r ∈ rec(P ) and −r ∈ rec(P ). Moreover, −r ∈ rec(P ) if
and only if r ∈ − rec(P ). Therefore, r ∈ lin(P ) if and only if r ∈ rec(P ) and r ∈ − rec(P ).

Moreover,

Lemma 10.5. lin(P ) is a linear subspace.
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Proof. Let r1, r2 ∈ lin(P ). Then x + 2λr1, x + 2λr2 ∈ P for any x ∈ P and λ ∈ R. Since P is
convex, we have

x+ λ
(
r1 + r2

)
=

1

2
(x+ 2λr1) +

1

2
(x+ 2λr2) ∈ P.

This implies that r1 + r2 ∈ lin(P ). Moreover, for any α ∈ R, we know that x + λαr1 ∈ P . This
implies that αr1 ∈ lin(P ). Therefore, lin(P ) is a linear subspace.

We say that polyhedron P is pointed if its lineality space is trivial, i.e., lin(P ) = {0}.

Proposition 10.6. Let P =
{
x ∈ Rd : Ax ≤ b

}
be a polyhedron such that

P = conv(v1, . . . , vp) + cone(r1, . . . , rq)

for some vectors v1, . . . , vp and r1, . . . , rq1. Then the recession cone of P is given by

rec(P ) =
{
x ∈ Rd : Ax ≤ 0

}
= cone(r1, . . . , rq).

Moreover, the lineality space is given by

lin(P ) =
{
x ∈ Rd : Ax = 0

}
= cone(r1, . . . , rq) ∩ cone(−r1, . . . ,−rq).

Proof. We first show that rec(P ) =
{
x ∈ Rd : Ax ≤ 0

}
. Let r satify Ar ≤ 0. Then for any x ∈ P

and λ ≥ 0, we have A(x + λr) ≤ Ax ≤ b, implying that x + λr ∈ P . Hence r ∈ rec(P ). Let r
be such that Ar ̸≤ 0. Then (Ar)i > 0 for some component i. Then for any x ∈ P , there exists a
sufficiently large λ > 0 such that (Ax)i +λ(Ar)i > 0. In this case, Ax+λAr = A(x+λr) ̸≤ 0, and
therefore, r ̸∈ rec(P ).

Next we show that rec(P ) = cone(r1, . . . , rq). If r ∈ cone(r1, . . . , rq), then x+λr ∈ P for any x ∈ P
and λ ≥ 0. Therefore, r ∈ rec(P ). Let r ∈ rec(P ). Then for any x ∈ conv(v1, . . . , vp), we have
x+ λr ∈ P for λ ≥ 0. Since conv(v1, . . . , vp) is bounded, we must have r ∈ cone(r1, . . . , rq).

By the previous lemma, we have that lin(P ) = rec(P ) ∩ − rec(P ). Note that

− rec(P ) =
{
x ∈ Rd : Ax ≥ 0

}
= cone(−r1, . . . ,−rq),

as required.

4 Implicit equalities and affine hull

Consider a polyhedron P =
{
x ∈ Rd : Ax ≤ b

}
where Ax ≤ b consists of linear inequalities a⊤i x ≤

bi for i ∈ [m]. We say that a⊤i x ≤ bi is an implicit equality if

P ⊆
{
x ∈ Rd : a⊤i x = bi

}
.

In words, a⊤i x ≤ bi is an implicit equality if every point in P satisfies it with equality. If there is
a point x in P such that a⊤i < bi, i.e., x satisfies the inequality strictly, then a⊤i x ≤ bi is not an
implicit equality.

Let A=x ≤ b= be the subsystem of Ax ≤ b that collects all implicit equalities, and let A<x ≤ b<

collect the other inequalities in Ax ≤ b.

1These vectors exist due to Minkowski-Weyl theorem
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Lemma 10.7. There is a point x̄ ∈ P that satisfies A<x̄ < b<, i.e., x̄ satisfies all inequalities
A<x ≤ b< strictly.

Proof. Suppose that A<x ≤ b< is given by a⊤i x ≤ bi for i ∈ I where I is some subset of [m]. For
each i ∈ I, as a⊤i x ≤ bi is not an implicit equality, there exists some xi ∈ P such that a⊤i x

i < bi.
Morever, as xi is point in P , it satisfies Axi ≤ b. Then we take a convex combination of xi for i ∈ I
given by

x̄ =
1

|I|
∑
i∈I

xi.

Then for any i ∈ I, we have a⊤i x̄ < bi.

Theorem 10.8. The affine hull of polyhedron P is given by

aff(P ) =
{
x ∈ Rd : A=x = b=

}
=

{
x ∈ Rd : A=x ≤ b=

}
.

In particular, dim(P ) = d− rank(A=).

Proof. It is straightforward that

aff(P ) ⊆
{
x ∈ Rd : A=x = b=

}
⊆

{
x ∈ Rd : A=x ≤ b=

}
.

Then it suffices to argue that {
x ∈ Rd : A=x ≤ b=

}
⊆ aff(P ).

Let x̂ satisfy A=x̂ ≤ b=. By Lemma 10.7, there exists x̄ ∈ P such that A<x̄ < b<. Then for some
sufficiently small ϵ > 0, we have

A<(x̄+ ϵ(x̂− x̄)) = A<x̄+ ϵA<(x̂− x̄) ≤ b<.

Moreover,
A=(x̄+ ϵ(x̂− x̄)) = (1− ϵ)A=x̄+ ϵA=x̂ ≤ b=.

Let x̃ = x̄+ ϵ(x̂− x̄). Then it follows that x̃ ∈ P . Note that as x̄, x̃ ∈ P , the line going through x̄
and x̃ is contained in the affine hull aff(P ). Moreover,

x̂ =
1

ϵ
x̃− 1− ϵ

ϵ
x̂.

Here, the coefficients sum up to 1, and therefore, x̂ is on the line going through x̄ and x̃. Therefore,
x̂ ∈ aff(P ).

Polyhedron P =
{
x ∈ Rd : Ax ≤ b

}
is full-dimensional if dim(P ) = d, in which case, the system

Ax ≤ b does not involve an implicit equality.

Example 10.9. Let us consider the assignment polytope, given by

P =

x ∈ Rn2
:

∑n
j=1 xij = 1, i = 1, . . . , n∑n
i=1 xij = 1, j = 1, . . . , n

xij ≥ 0, i, j = 1, . . . , n

 .

We may prove that dim(P ) = n2 − 2n+ 1.
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Note that the system defining P has 2n equality constraints. Let Ax = 1 denote the system that
collects the 2n equality constraints. We will show that rank(A) = 2n− 1. Note that∑

i=1

∑
j=1

xij︸ ︷︷ ︸
aggregating the first set of equalities

−
∑
j=1

∑
i=1

xij︸ ︷︷ ︸
aggregating the second set

= 0.

This implies that A is not of full row rank, and therefore, rank(A) ≤ 2n − 1. Next, consider the
column submatrix of A associated with variables x1i for i = 1, . . . , n and xii for i = 2, . . . , n.

1 1 1 1
1

1
1

1
1 1

1 1
1 1


The submatrix has 2n − 1 columns which are linearly independent. Therefore, rank(A) ≥ 2n − 1.
This implies that rank(A) = 2n − 1. Then it follows from Theorem 10.8 that dim(P ) = n2 −
rank(A) = n2 − 2n+ 1, as required.

6


	Outline
	Minkowski-Weyl theorem for general polyhedra
	Recession cone and lineality space
	Implicit equalities and affine hull

