1 Outline

In this lecture, we study

- Minkowski-Weyl theorem for general polyhedra.
- recession cone and lineality space.
- implicit equalities and affine hull.

2 Minkowski-Weyl theorem for general polyhedra

A set $P \subseteq \mathbb{R}^d$ is a **polyhedron** if it is defined by a **finite** number of linear inequalities, i.e.

$$P = \{ x \in \mathbb{R}^d : Ax \le b \}.$$

Hence, a polyhedron is a finite intersection of half-spaces. A polyhedron is rational if it is defined by

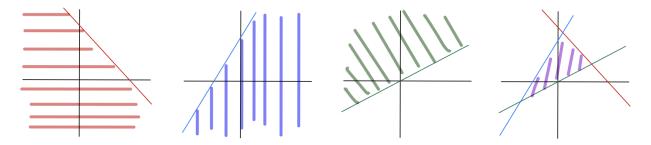


Figure 10.1: Polyhedron defined by three inequalities

a system of linear inequalities where all coefficients and right-hand sides are rational. A polyhedral cone is by definition a polyhedron.

Given a polyhedron $P = \{x \in \mathbb{R}^d : Ax \leq b\}$, we can associate a polyhedral cone given by

$$C_P = \left\{ (x, y) \in \mathbb{R}^d \times \mathbb{R} : Ax - by \le 0, y \ge 0 \right\}.$$

Then we have

$$P = \left\{ x \in \mathbb{R}^d : (x, 1) \in C_P \right\}.$$

Given two sets $Q,C\subseteq \mathbb{R}^d,$ Minkowski sum of Q and C is defined as

$$Q + C = \left\{ x = u + v \in \mathbb{R}^d : u \in Q \ v \in C \right\}.$$

Based on these, we may prove the following theorem for polyhedra.

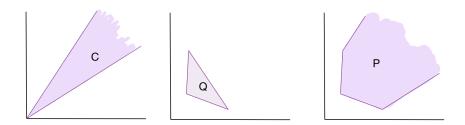


Figure 10.2: Polyhedron as the Minkowski sum of a polytope and a polyhedral cone

Theorem 10.1 (Minkowski-Weyl theorem). A set $P \subseteq \mathbb{R}^d$ is a polyhedron if and only if

$$P = \operatorname{conv}(v^1, \dots, v^p) + \operatorname{cone}(r^1, \dots, r^q)$$

for some vectors v^1, \ldots, v^p and r^1, \ldots, r^q .

Proof. (\Rightarrow) Let $P = \{x : \mathbb{R}^d : Ax \leq b\}$ be a polyhedron. Then consider the associated cone $C_P = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : Ax - by \leq 0, y \geq 0\}$. By Minkowski-Weyl theorem for cones, there exist vectors $(u^1, w^1), \ldots, (u^k, w^k) \in \mathbb{R}^d \times \mathbb{R}$ such that

$$C_P = \operatorname{cone}\left(\binom{u^1}{w^1}, \dots, \binom{u^k}{w^k}\right).$$

By the definition of C_P , we have $w^1, \ldots, w^k \ge 0$. Then each w^i is strictly positive or equal to 0. For each vector (u^i, w^i) with $w^i > 0$, we divide it by w^i . Then C_P can be rewritten as

$$C_P = \operatorname{cone}\left(\binom{v^1}{1}, \dots, \binom{v^p}{1}, \binom{r^1}{0}, \dots, \binom{r^q}{0}\right)$$
$$= \left\{ (x, y) \in \mathbb{R}^d \times \mathbb{R} : \exists \lambda \ge 0, \mu \ge 0 \text{ s.t. } x = \sum_{i=1}^p \lambda_i v^i + \sum_{j=1}^q \mu_j r^j, \ y = \sum_{i=1}^p \lambda_i \right\}$$

Since $P = \{x \in \mathbb{R}^d : (x, 1) \in C_P\}$, it follows that

$$P = \operatorname{conv}(v^1, \dots, v^p) + \operatorname{cone}(r^1, \dots, r^q).$$

 (\Leftarrow) Let C_P be defined as

$$C_P = \operatorname{cone}\left(\binom{v^1}{1}, \dots, \binom{v^p}{1}, \binom{r^1}{0}, \dots, \binom{r^q}{0}\right)$$

By Minkowski-Weyl theorem for cones, we know that C_P is a polyhedral cone, and therefore, C_P can be written as

$$C_P = \left\{ (x, y) \in \mathbb{R}^d \times \mathbb{R} : Ax - by \le 0 \right\}.$$

Note that $P = \{x \in \mathbb{R}^d : (x, 1) \in C_P\}$, in which case, we have

$$P = \{ x \in \mathbb{R}^d : Ax \le b \},\$$

as required.

A set $P \subseteq \mathbb{R}^d$ is a **polytope** if it is a polyhedron and bounded, i.e., $P \subseteq [-M, M]^d$ for some sufficiently large M > 0.

Corollary 10.2 (Minkowski-Weyl theorem for polytopes). A set $P \subseteq \mathbb{R}^d$ is a polytope if and only if

$$P = \operatorname{conv}(v^1, \dots, v^p)$$

for some vectors v^1, \ldots, v^p .

Proof. (\Rightarrow) By Theorem 10.1, as P is a polyhedron, $P = \operatorname{conv}(v^1, \ldots, v^p) + \operatorname{cone}(r^1, \ldots, r^q)$ for some vectors v^1, \ldots, v^p and r^1, \ldots, r^q . Here, since P is bounded, we have q = 0 or $r^1 = \cdots = r^q = 0$, in which case $P = \operatorname{conv}(v^1, \ldots, v^p)$.

(\Leftarrow) By Theorem 10.1, P is a polyhedron. Moreover, since P is the convex hull of a finite number of vectors, P is bounded. Therefore, P is a polytope.

3 Recession cone and lineality space

Given a nonempty polyhedron P, a ray of P is a vector r such that

 $x + \lambda r \in P$ for all $x \in P$ and $\lambda \ge 0$.

The **recession cone** of P is the set of all rays of P, i.e.,

$$\operatorname{rec}(P) = \left\{ r \in \mathbb{R}^d : x + \lambda r \in P \quad \text{for all } x \in P \text{ and } \lambda \ge 0 \right\}.$$

Lemma 10.3. rec(P) is a convex cone.

Proof. Let $r^1, r^2 \in rec(P)$. Then $x + \lambda r^1, x + \lambda r^2 \in P$ for any $x \in P$ and $\lambda \ge 0$. Since P is convex, for any $0 \le \alpha \le 1$, we have

$$x + \lambda \left(\alpha r^1 + (1 - \alpha)r^2 \right) = \alpha (x + \lambda r^1) + (1 - \alpha)(x + \lambda r^2) \in P.$$

This implies that $\alpha r^1 + (1 - \alpha)r^2 \in rec(P)$, and therefore, rec(P) is a convex cone.

A ray r of polyhedron P is called an **extreme ray** of P if it cannot be written as a convex combination of two distinct rays of P.

The **lineality space** of P is defined as

$$lin(P) = \left\{ r \in \mathbb{R}^d : x + \lambda r \in P \text{ for all } x \in P \text{ and } \lambda \in \mathbb{R} \right\}.$$

Hence, the lineality space is the set of all vectors r such that both r and -r are rays of P.

Lemma 10.4. $lin(P) = rec(P) \cap - rec(P)$.

Proof. Note that $r \in \text{lin}(P)$ if and only if $r \in \text{rec}(P)$ and $-r \in \text{rec}(P)$. Moreover, $-r \in \text{rec}(P)$ if and only if $r \in -\text{rec}(P)$. Therefore, $r \in \text{lin}(P)$ if and only if $r \in \text{rec}(P)$ and $r \in -\text{rec}(P)$. \Box

Moreover,

Lemma 10.5. lin(P) is a linear subspace.

Proof. Let $r^1, r^2 \in \text{lin}(P)$. Then $x + 2\lambda r^1, x + 2\lambda r^2 \in P$ for any $x \in P$ and $\lambda \in \mathbb{R}$. Since P is convex, we have

$$x + \lambda (r^1 + r^2) = \frac{1}{2}(x + 2\lambda r^1) + \frac{1}{2}(x + 2\lambda r^2) \in P.$$

This implies that $r^1 + r^2 \in \text{lin}(P)$. Moreover, for any $\alpha \in \mathbb{R}$, we know that $x + \lambda \alpha r^1 \in P$. This implies that $\alpha r^1 \in \text{lin}(P)$. Therefore, lin(P) is a linear subspace.

We say that polyhedron P is **pointed** if its lineality space is **trivial**, i.e., $lin(P) = \{0\}$.

Proposition 10.6. Let $P = \{x \in \mathbb{R}^d : Ax \leq b\}$ be a polyhedron such that

 $P = \operatorname{conv}(v^1, \dots, v^p) + \operatorname{cone}(r^1, \dots, r^q)$

for some vectors v^1, \ldots, v^p and r^1, \ldots, r^{q^1} . Then the recession cone of P is given by

$$\operatorname{rec}(P) = \left\{ x \in \mathbb{R}^d : Ax \le 0 \right\} = \operatorname{cone}(r^1, \dots, r^q).$$

Moreover, the lineality space is given by

$$\ln(P) = \left\{ x \in \mathbb{R}^d : Ax = 0 \right\} = \operatorname{cone}(r^1, \dots, r^q) \cap \operatorname{cone}(-r^1, \dots, -r^q).$$

Proof. We first show that $\operatorname{rec}(P) = \{x \in \mathbb{R}^d : Ax \leq 0\}$. Let r satify $Ar \leq 0$. Then for any $x \in P$ and $\lambda \geq 0$, we have $A(x + \lambda r) \leq Ax \leq b$, implying that $x + \lambda r \in P$. Hence $r \in \operatorname{rec}(P)$. Let r be such that $Ar \leq 0$. Then $(Ar)_i > 0$ for some component i. Then for any $x \in P$, there exists a sufficiently large $\lambda > 0$ such that $(Ax)_i + \lambda(Ar)_i > 0$. In this case, $Ax + \lambda Ar = A(x + \lambda r) \leq 0$, and therefore, $r \notin \operatorname{rec}(P)$.

Next we show that $\operatorname{rec}(P) = \operatorname{cone}(r^1, \ldots, r^q)$. If $r \in \operatorname{cone}(r^1, \ldots, r^q)$, then $x + \lambda r \in P$ for any $x \in P$ and $\lambda \geq 0$. Therefore, $r \in \operatorname{rec}(P)$. Let $r \in \operatorname{rec}(P)$. Then for any $x \in \operatorname{conv}(v^1, \ldots, v^p)$, we have $x + \lambda r \in P$ for $\lambda \geq 0$. Since $\operatorname{conv}(v^1, \ldots, v^p)$ is bounded, we must have $r \in \operatorname{cone}(r^1, \ldots, r^q)$.

By the previous lemma, we have that $lin(P) = rec(P) \cap - rec(P)$. Note that

$$-\operatorname{rec}(P) = \left\{ x \in \mathbb{R}^d : Ax \ge 0 \right\} = \operatorname{cone}(-r^1, \dots, -r^q).$$

as required.

4 Implicit equalities and affine hull

Consider a polyhedron $P = \{x \in \mathbb{R}^d : Ax \leq b\}$ where $Ax \leq b$ consists of linear inequalities $a_i^{\top}x \leq b_i$ for $i \in [m]$. We say that $a_i^{\top}x \leq b_i$ is an **implicit equality** if

$$P \subseteq \left\{ x \in \mathbb{R}^d : a_i^\top x = b_i \right\}.$$

In words, $a_i^{\top} x \leq b_i$ is an implicit equality if every point in P satisfies it with equality. If there is a point x in P such that $a_i^{\top} < b_i$, i.e., x satisfies the inequality strictly, then $a_i^{\top} x \leq b_i$ is not an implicit equality.

Let $A^{=}x \leq b^{=}$ be the subsystem of $Ax \leq b$ that collects all implicit equalities, and let $A^{<}x \leq b^{<}$ collect the other inequalities in $Ax \leq b$.

¹These vectors exist due to Minkowski-Weyl theorem

Lemma 10.7. There is a point $\bar{x} \in P$ that satisfies $A^{<}\bar{x} < b^{<}$, i.e., \bar{x} satisfies all inequalities $A^{<}x \leq b^{<}$ strictly.

Proof. Suppose that $A^{\leq}x \leq b^{\leq}$ is given by $a_i^{\top}x \leq b_i$ for $i \in I$ where I is some subset of [m]. For each $i \in I$, as $a_i^{\top}x \leq b_i$ is not an implicit equality, there exists some $x^i \in P$ such that $a_i^{\top}x^i < b_i$. Morever, as x^i is point in P, it satisfies $Ax^i \leq b$. Then we take a convex combination of x^i for $i \in I$ given by

$$\bar{x} = \frac{1}{|I|} \sum_{i \in I} x^i.$$

Then for any $i \in I$, we have $a_i^\top \bar{x} < b_i$.

Theorem 10.8. The affine hull of polyhedron P is given by

aff(P) =
$$\left\{ x \in \mathbb{R}^d : A^= x = b^= \right\} = \left\{ x \in \mathbb{R}^d : A^= x \le b^= \right\}.$$

In particular, $\dim(P) = d - \operatorname{rank}(A^{=})$.

Proof. It is straightforward that

aff
$$(P) \subseteq \left\{ x \in \mathbb{R}^d : A^= x = b^= \right\} \subseteq \left\{ x \in \mathbb{R}^d : A^= x \le b^= \right\}$$

Then it suffices to argue that

$$\left\{x \in \mathbb{R}^d : A^{=}x \le b^{=}\right\} \subseteq \operatorname{aff}(P)$$

Let \hat{x} satisfy $A^{=}\hat{x} \leq b^{=}$. By Lemma 10.7, there exists $\bar{x} \in P$ such that $A^{<}\bar{x} < b^{<}$. Then for some sufficiently small $\epsilon > 0$, we have

$$A^{<}(\bar{x} + \epsilon(\hat{x} - \bar{x})) = A^{<}\bar{x} + \epsilon A^{<}(\hat{x} - \bar{x}) \le b^{<}.$$

Moreover,

$$A^{=}(\bar{x} + \epsilon(\hat{x} - \bar{x})) = (1 - \epsilon)A^{=}\bar{x} + \epsilon A^{=}\hat{x} \le b^{=}$$

Let $\tilde{x} = \bar{x} + \epsilon(\hat{x} - \bar{x})$. Then it follows that $\tilde{x} \in P$. Note that as $\bar{x}, \tilde{x} \in P$, the line going through \bar{x} and \tilde{x} is contained in the affine hull aff(P). Moreover,

$$\hat{x} = \frac{1}{\epsilon}\tilde{x} - \frac{1-\epsilon}{\epsilon}\hat{x}.$$

Here, the coefficients sum up to 1, and therefore, \hat{x} is on the line going through \bar{x} and \tilde{x} . Therefore, $\hat{x} \in \operatorname{aff}(P)$.

Polyhedron $P = \{x \in \mathbb{R}^d : Ax \leq b\}$ is **full-dimensional** if dim(P) = d, in which case, the system $Ax \leq b$ does not involve an implicit equality.

Example 10.9. Let us consider the **assignment polytope**, given by

$$P = \left\{ x \in \mathbb{R}^{n^2} : \sum_{i=1}^n x_{ij} = 1, \quad i = 1, \dots, n \\ \sum_{i=1}^n x_{ij} = 1, \quad j = 1, \dots, n \\ x_{ij} \ge 0, \quad i, j = 1, \dots, n \end{array} \right\}.$$

We may prove that $\dim(P) = n^2 - 2n + 1$.

Note that the system defining P has 2n equality constraints. Let Ax = 1 denote the system that collects the 2n equality constraints. We will show that rank(A) = 2n - 1. Note that

$$\sum_{i=1} \sum_{j=1} x_{ij} - \sum_{j=1} \sum_{i=1} x_{ij} = 0.$$
aggregating the first set of equalities aggregating the second set

This implies that A is not of full row rank, and therefore, $\operatorname{rank}(A) \leq 2n - 1$. Next, consider the column submatrix of A associated with variables x_{1i} for $i = 1, \ldots, n$ and x_{ii} for $i = 2, \ldots, n$.

The submatrix has 2n - 1 columns which are linearly independent. Therefore, $\operatorname{rank}(A) \ge 2n - 1$. This implies that $\operatorname{rank}(A) = 2n - 1$. Then it follows from Theorem 10.8 that $\dim(P) = n^2 - \operatorname{rank}(A) = n^2 - 2n + 1$, as required.