1 Outline

In this lecture, we study

- Minkowski-Weyl theorem for general polyhedra.
- recession cone and lineality space.
- implicit equalities and affine hull.

2 Minkowski-Weyl theorem for general polyhedra

A set $P \subseteq \mathbb{R}^{d}$ is a polyhedron if it is defined by a finite number of linear inequalities, i.e.

$$
P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\} .
$$

Hence, a polyhedron is a finite intersection of half-spaces. A polyhedron is rational if it is defined by

Figure 10.1: Polyhedron defined by three inequalities
a system of linear inequalities where all coefficients and right-hand sides are rational. A polyhedral cone is by definition a polyhedron.
Given a polyhedron $P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$, we can associate a polyhedral cone given by

$$
C_{P}=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}: A x-b y \leq 0, y \geq 0\right\} .
$$

Then we have

$$
P=\left\{x \in \mathbb{R}^{d}:(x, 1) \in C_{P}\right\} .
$$

Given two sets $Q, C \subseteq \mathbb{R}^{d}$, Minkowski sum of Q and C is defined as

$$
Q+C=\left\{x=u+v \in \mathbb{R}^{d}: u \in Q v \in C\right\} .
$$

Based on these, we may prove the following theorem for polyhedra.

Figure 10.2: Polyhedron as the Minkowski sum of a polytope and a polyhedral cone

Theorem 10.1 (Minkowski-Weyl theorem). A set $P \subseteq \mathbb{R}^{d}$ is a polyhedron if and only if

$$
P=\operatorname{conv}\left(v^{1}, \ldots, v^{p}\right)+\operatorname{cone}\left(r^{1}, \ldots, r^{q}\right)
$$

for some vectors v^{1}, \ldots, v^{p} and r^{1}, \ldots, r^{q}.
Proof. (\Rightarrow) Let $P=\left\{x: \mathbb{R}^{d}: A x \leq b\right\}$ be a polyhedron. Then consider the associated cone $C_{P}=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}: A x-b y \leq 0, y \geq 0\right\}$. By Minkowski-Weyl theorem for cones, there exist vectors $\left(u^{1}, w^{1}\right), \ldots,\left(u^{k}, w^{k}\right) \in \mathbb{R}^{d} \times \mathbb{R}$ such that

$$
C_{P}=\operatorname{cone}\left(\binom{u^{1}}{w^{1}}, \ldots,\binom{u^{k}}{w^{k}}\right)
$$

By the definition of C_{P}, we have $w^{1}, \ldots, w^{k} \geq 0$. Then each w^{i} is strictly positive or equal to 0 . For each vector $\left(u^{i}, w^{i}\right)$ with $w^{i}>0$, we divide it by w^{i}. Then C_{P} can be rewritten as

$$
\begin{aligned}
C_{P} & =\operatorname{cone}\left(\binom{v^{1}}{1}, \ldots,\binom{v^{p}}{1},\binom{r^{1}}{0}, \ldots,\binom{r^{q}}{0}\right) \\
& =\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}: \exists \lambda \geq 0, \mu \geq 0 \text { s.t. } x=\sum_{i=1}^{p} \lambda_{i} v^{i}+\sum_{j=1}^{q} \mu_{j} r^{j}, y=\sum_{i=1}^{p} \lambda_{i}\right\}
\end{aligned}
$$

Since $P=\left\{x \in \mathbb{R}^{d}:(x, 1) \in C_{P}\right\}$, it follows that

$$
P=\operatorname{conv}\left(v^{1}, \ldots, v^{p}\right)+\operatorname{cone}\left(r^{1}, \ldots, r^{q}\right) .
$$

(\Leftarrow) Let C_{P} be defined as

$$
C_{P}=\operatorname{cone}\left(\binom{v^{1}}{1}, \ldots,\binom{v^{p}}{1},\binom{r^{1}}{0}, \ldots,\binom{r^{q}}{0}\right)
$$

By Minkowski-Weyl theorem for cones, we know that C_{P} is a polyhedral cone, and therefore, C_{P} can be written as

$$
C_{P}=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}: \quad A x-b y \leq 0\right\} .
$$

Note that $P=\left\{x \in \mathbb{R}^{d}:(x, 1) \in C_{P}\right\}$, in which case, we have

$$
P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\},
$$

as required.

A set $P \subseteq \mathbb{R}^{d}$ is a polytope if it is a polyhedron and bounded, i.e., $P \subseteq[-M, M]^{d}$ for some sufficiently large $M>0$.

Corollary 10.2 (Minkowski-Weyl theorem for polytopes). A set $P \subseteq \mathbb{R}^{d}$ is a polytope if and only if

$$
P=\operatorname{conv}\left(v^{1}, \ldots, v^{p}\right)
$$

for some vectors v^{1}, \ldots, v^{p}.
Proof. (\Rightarrow) By Theorem 10.1, as P is a polyhedron, $P=\operatorname{conv}\left(v^{1}, \ldots, v^{p}\right)+\operatorname{cone}\left(r^{1}, \ldots, r^{q}\right)$ for some vectors v^{1}, \ldots, v^{p} and r^{1}, \ldots, r^{q}. Here, since P is bounded, we have $q=0$ or $r^{1}=\cdots=r^{q}=0$, in which case $P=\operatorname{conv}\left(v^{1}, \ldots, v^{p}\right)$.
(\Leftarrow) By Theorem 10.1, P is a polyhedron. Moreover, since P is the convex hull of a finite number of vectors, P is bounded. Therefore, P is a polytope.

3 Recession cone and lineality space

Given a nonempty polyhedron P, a ray of P is a vector r such that

$$
x+\lambda r \in P \quad \text { for all } x \in P \text { and } \lambda \geq 0 .
$$

The recession cone of P is the set of all rays of P, i.e.,

$$
\operatorname{rec}(P)=\left\{r \in \mathbb{R}^{d}: x+\lambda r \in P \quad \text { for all } x \in P \text { and } \lambda \geq 0\right\} .
$$

Lemma 10.3. $\operatorname{rec}(P)$ is a convex cone.
Proof. Let $r^{1}, r^{2} \in \operatorname{rec}(P)$. Then $x+\lambda r^{1}, x+\lambda r^{2} \in P$ for any $x \in P$ and $\lambda \geq 0$. Since P is convex, for any $0 \leq \alpha \leq 1$, we have

$$
x+\lambda\left(\alpha r^{1}+(1-\alpha) r^{2}\right)=\alpha\left(x+\lambda r^{1}\right)+(1-\alpha)\left(x+\lambda r^{2}\right) \in P .
$$

This implies that $\alpha r^{1}+(1-\alpha) r^{2} \in \operatorname{rec}(P)$, and therefore, $\operatorname{rec}(P)$ is a convex cone.
A ray r of polyhedron P is called an extreme ray of P if it cannot be written as a convex combination of two distinct rays of P.

The lineality space of P is defined as

$$
\operatorname{lin}(P)=\left\{r \in \mathbb{R}^{d}: x+\lambda r \in P \quad \text { for all } x \in P \text { and } \lambda \in \mathbb{R}\right\} .
$$

Hence, the lineality space is the set of all vectors r such that both r and $-r$ are rays of P.
Lemma 10.4. $\operatorname{lin}(P)=\operatorname{rec}(P) \cap-\operatorname{rec}(P)$.
Proof. Note that $r \in \operatorname{lin}(P)$ if and only if $r \in \operatorname{rec}(P)$ and $-r \in \operatorname{rec}(P)$. Moreover, $-r \in \operatorname{rec}(P)$ if and only if $r \in-\operatorname{rec}(P)$. Therefore, $r \in \operatorname{lin}(P)$ if and only if $r \in \operatorname{rec}(P)$ and $r \in-\operatorname{rec}(P)$.

Moreover,
Lemma 10.5. $\operatorname{lin}(P)$ is a linear subspace.

Proof. Let $r^{1}, r^{2} \in \operatorname{lin}(P)$. Then $x+2 \lambda r^{1}, x+2 \lambda r^{2} \in P$ for any $x \in P$ and $\lambda \in \mathbb{R}$. Since P is convex, we have

$$
x+\lambda\left(r^{1}+r^{2}\right)=\frac{1}{2}\left(x+2 \lambda r^{1}\right)+\frac{1}{2}\left(x+2 \lambda r^{2}\right) \in P .
$$

This implies that $r^{1}+r^{2} \in \operatorname{lin}(P)$. Moreover, for any $\alpha \in \mathbb{R}$, we know that $x+\lambda \alpha r^{1} \in P$. This implies that $\alpha r^{1} \in \operatorname{lin}(P)$. Therefore, $\operatorname{lin}(P)$ is a linear subspace.

We say that polyhedron P is pointed if its lineality space is trivial, i.e., $\operatorname{lin}(P)=\{0\}$.
Proposition 10.6. Let $P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$ be a polyhedron such that

$$
P=\operatorname{conv}\left(v^{1}, \ldots, v^{p}\right)+\operatorname{cone}\left(r^{1}, \ldots, r^{q}\right)
$$

for some vectors v^{1}, \ldots, v^{p} and $r^{1}, \ldots, r^{q 1}$. Then the recession cone of P is given by

$$
\operatorname{rec}(P)=\left\{x \in \mathbb{R}^{d}: A x \leq 0\right\}=\operatorname{cone}\left(r^{1}, \ldots, r^{q}\right)
$$

Moreover, the lineality space is given by

$$
\operatorname{lin}(P)=\left\{x \in \mathbb{R}^{d}: A x=0\right\}=\operatorname{cone}\left(r^{1}, \ldots, r^{q}\right) \cap \operatorname{cone}\left(-r^{1}, \ldots,-r^{q}\right)
$$

Proof. We first show that $\operatorname{rec}(P)=\left\{x \in \mathbb{R}^{d}: A x \leq 0\right\}$. Let r satify $A r \leq 0$. Then for any $x \in P$ and $\lambda \geq 0$, we have $A(x+\lambda r) \leq A x \leq b$, implying that $x+\lambda r \in P$. Hence $r \in \operatorname{rec}(P)$. Let r be such that $A r \not \leq 0$. Then $(A r)_{i}>0$ for some component i. Then for any $x \in P$, there exists a sufficiently large $\lambda>0$ such that $(A x)_{i}+\lambda(A r)_{i}>0$. In this case, $A x+\lambda A r=A(x+\lambda r) \nsubseteq 0$, and therefore, $r \notin \operatorname{rec}(P)$.
Next we show that $\operatorname{rec}(P)=\operatorname{cone}\left(r^{1}, \ldots, r^{q}\right)$. If $r \in \operatorname{cone}\left(r^{1}, \ldots, r^{q}\right)$, then $x+\lambda r \in P$ for any $x \in P$ and $\lambda \geq 0$. Therefore, $r \in \operatorname{rec}(P)$. Let $r \in \operatorname{rec}(P)$. Then for any $x \in \operatorname{conv}\left(v^{1}, \ldots, v^{p}\right)$, we have $x+\lambda r \in P$ for $\lambda \geq 0$. Since $\operatorname{conv}\left(v^{1}, \ldots, v^{p}\right)$ is bounded, we must have $r \in \operatorname{cone}\left(r^{1}, \ldots, r^{q}\right)$.
By the previous lemma, we have that $\operatorname{lin}(P)=\operatorname{rec}(P) \cap-\operatorname{rec}(P)$. Note that

$$
-\operatorname{rec}(P)=\left\{x \in \mathbb{R}^{d}: A x \geq 0\right\}=\operatorname{cone}\left(-r^{1}, \ldots,-r^{q}\right)
$$

as required.

4 Implicit equalities and affine hull

Consider a polyhedron $P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$ where $A x \leq b$ consists of linear inequalities $a_{i}^{\top} x \leq$ b_{i} for $i \in[m]$. We say that $a_{i}^{\top} x \leq b_{i}$ is an implicit equality if

$$
P \subseteq\left\{x \in \mathbb{R}^{d}: a_{i}^{\top} x=b_{i}\right\} .
$$

In words, $a_{i}^{\top} x \leq b_{i}$ is an implicit equality if every point in P satisfies it with equality. If there is a point x in P such that $a_{i}^{\top}<b_{i}$, i.e., x satisfies the inequality strictly, then $a_{i}^{\top} x \leq b_{i}$ is not an implicit equality.
Let $A^{=} x \leq b^{=}$be the subsystem of $A x \leq b$ that collects all implicit equalities, and let $A^{<} x \leq b^{<}$ collect the other inequalities in $A x \leq b$.

[^0]Lemma 10.7. There is a point $\bar{x} \in P$ that satisfies $A^{<} \bar{x}<b^{<}$, i.e., \bar{x} satisfies all inequalities $A^{<} x \leq b^{<}$strictly.

Proof. Suppose that $A^{<} x \leq b^{<}$is given by $a_{i}^{\top} x \leq b_{i}$ for $i \in I$ where I is some subset of [m]. For each $i \in I$, as $a_{i}^{\top} x \leq b_{i}$ is not an implicit equality, there exists some $x^{i} \in P$ such that $a_{i}^{\top} x^{i}<b_{i}$. Morever, as x^{i} is point in P, it satisfies $A x^{i} \leq b$. Then we take a convex combination of x^{i} for $i \in I$ given by

$$
\bar{x}=\frac{1}{|I|} \sum_{i \in I} x^{i}
$$

Then for any $i \in I$, we have $a_{i}^{\top} \bar{x}<b_{i}$.
Theorem 10.8. The affine hull of polyhedron P is given by

$$
\operatorname{aff}(P)=\left\{x \in \mathbb{R}^{d}: A^{=} x=b^{=}\right\}=\left\{x \in \mathbb{R}^{d}: A^{=} x \leq b^{=}\right\}
$$

In particular, $\operatorname{dim}(P)=d-\operatorname{rank}\left(A^{=}\right)$.
Proof. It is straightforward that

$$
\operatorname{aff}(P) \subseteq\left\{x \in \mathbb{R}^{d}: A^{=} x=b^{=}\right\} \subseteq\left\{x \in \mathbb{R}^{d}: A^{=} x \leq b^{=}\right\}
$$

Then it suffices to argue that

$$
\left\{x \in \mathbb{R}^{d}: A^{=} x \leq b^{=}\right\} \subseteq \operatorname{aff}(P)
$$

Let \hat{x} satisfy $A^{=} \hat{x} \leq b^{=}$. By Lemma 10.7 , there exists $\bar{x} \in P$ such that $A^{<} \bar{x}<b^{<}$. Then for some sufficiently small $\epsilon>0$, we have

$$
A^{<}(\bar{x}+\epsilon(\hat{x}-\bar{x}))=A^{<} \bar{x}+\epsilon A^{<}(\hat{x}-\bar{x}) \leq b^{<}
$$

Moreover,

$$
A^{=}(\bar{x}+\epsilon(\hat{x}-\bar{x}))=(1-\epsilon) A^{=} \bar{x}+\epsilon A^{=} \hat{x} \leq b^{=}
$$

Let $\tilde{x}=\bar{x}+\epsilon(\hat{x}-\bar{x})$. Then it follows that $\tilde{x} \in P$. Note that as $\bar{x}, \tilde{x} \in P$, the line going through \bar{x} and \tilde{x} is contained in the affine hull aff (P). Moreover,

$$
\hat{x}=\frac{1}{\epsilon} \tilde{x}-\frac{1-\epsilon}{\epsilon} \hat{x} .
$$

Here, the coefficients sum up to 1 , and therefore, \hat{x} is on the line going through \bar{x} and \tilde{x}. Therefore, $\hat{x} \in \operatorname{aff}(P)$.

Polyhedron $P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$ is full-dimensional if $\operatorname{dim}(P)=d$, in which case, the system $A x \leq b$ does not involve an implicit equality.

Example 10.9. Let us consider the assignment polytope, given by

$$
P=\left\{\begin{array}{rll}
& \sum_{j=1}^{n} x_{i j}=1, & i=1, \ldots, n \\
x \in \mathbb{R}^{n^{2}}: \quad \begin{array}{l}
\sum_{i=1}^{n} x_{i j}=1, \\
x_{i j} \geq 0,
\end{array} & i, j=1, \ldots, n
\end{array}\right\}
$$

We may prove that $\operatorname{dim}(P)=n^{2}-2 n+1$.

Note that the system defining P has $2 n$ equality constraints. Let $A x=1$ denote the system that collects the $2 n$ equality constraints. We will show that $\operatorname{rank}(A)=2 n-1$. Note that

$$
\underbrace{\sum_{i=1} \sum_{j=1} x_{i j}}_{\text {g the first set of equalities }}-\underbrace{\sum_{j=1} \sum_{i=1} x_{i j}}_{\text {aggregating the second set }}=0 .
$$

This implies that A is not of full row rank, and therefore, $\operatorname{rank}(A) \leq 2 n-1$. Next, consider the column submatrix of A associated with variables $x_{1 i}$ for $i=1, \ldots, n$ and $x_{i i}$ for $i=2, \ldots, n$.

The submatrix has $2 n-1$ columns which are linearly independent. Therefore, $\operatorname{rank}(A) \geq 2 n-1$. This implies that $\operatorname{rank}(A)=2 n-1$. Then it follows from Theorem 10.8 that $\operatorname{dim}(P)=n^{2}-$ $\operatorname{rank}(A)=n^{2}-2 n+1$, as required.

[^0]: ${ }^{1}$ These vectors exist due to Minkowski-Weyl theorem

