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Instructions

• Submit a PDF document with your solutions through the assignment portal on KLMS by the due date.
Please ensure that your name and student ID are on the front page.

• Late submissions will not be accepted except in extenuating circumstances. Special consideration should
be applied for in this case.

• It is required that you typeset your solutions in LaTeX. Handwritten solutions will not be accepted.

• Spend some time ensuring your arguments are coherent and your solutions clearly communicate your
ideas.
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1. We consider the standard convex optimization problem

min
x∈C

f(x),

under the assumption that f is β-smooth. In this question we will analyse the following algorithm:

• Choose v1 := arg minx∈C
1
2‖x‖

2
2.

• For t = 1, . . . , T :

xt := projC (vt − η∇f(vt))

vt+1 := projC (vt − η∇f(xt)) .

(a) (10 points) First show that for any x ∈ C,

1

2
‖x− v1‖22 ≤

1

2
‖x‖22 −

1

2
‖v1‖22.

(b) (10 points) Consider two consecutive iterates t, t+1 and their associated points vt, xt, vt+1, xt+1. Show
that for any z ∈ C,

η∇f(vt)
>(xt − z) ≤

1

2
‖vt − z‖22 −

1

2
‖xt − z‖22 −

1

2
‖vt − xt‖22,

η∇f(xt)
>(vt+1 − z) ≤

1

2
‖vt − z‖22 −

1

2
‖vt+1 − z‖22 −

1

2
‖vt − vt+1‖22.

(c) (5 points) Consider two consecutive iterates t, t+ 1 and their associated points vt, xt, vt+1, xt+1. Show
that for any z ∈ C,

η∇f(xt)
>(xt − z) ≤

1

2
‖vt − z‖22 −

1

2
‖vt+1 − z‖22 −

1

2
‖xt − vt+1‖22 −

1

2
‖vt − xt‖22

+ η (∇f(vt)−∇f(xt))
>

(vt+1 − xt).

(d) (5 points) Show that

−1

2
‖xt − vt+1‖22 −

1

2
‖vt − xt‖22 + η (∇f(vt)−∇f(xt))

>
(vt+1 − xt) ≤ (ηβ − 1) ‖vt − xt‖2‖vt+1 − xt‖2,

(e) (5 points) Show that choosing η = 1/β guarantees that for any z ∈ C

η∇f(xt)
>(xt − z) ≤

1

2
‖vt − z‖22 −

1

2
‖vt+1 − z‖22.

(f) (5 points) Suppose we run the algorithm with η = 1/β. Define x̄T = 1
T

∑
t∈[T ] xt and let x∗ be an

optimal solution to the optimization problem. Show that

f(x̄T )− f(x∗) ≤ β(‖x∗‖22 − ‖v1‖22)

2T
.

2. We consider the following constrained convex programming problem

minimize f(x)

subject to g(x) ≤ 0

where f, g : Rd → R. What follows is a penalized version of this convex program.

minimize f(x) +
η

2
(g(x))

2
+

where (δ)+ = max{δ, 0}.
(a) (15 points) Let

h(δ) =
η

2
(δ)2+, δ ∈ R.

Show that

h∗(λ) =

{
1
2ηλ

2, if λ ≥ 0,

+∞, if λ < 0.
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(b) (15 points) Show that the penalized problem is equivalent to

min
x∈Rd

max
λ≥0

{
f(x) + λg(x)− 1

2η
λ2
}
.

3. Suppose we have binary-labelled data {(xi, yi)}i∈[n] where xi ∈ Rd and yi ∈ {±1}. We wish to build a

classifier, i.e., a function h : Rd → {±1} that can predict the label y ∈ {±1} from the feature x ∈ Rd of a
new point (x, y). That is, given x ∈ Rd, the prediction of y is h(x) ∈ {±1}.
In order to meaningfully solve this problem, we need to make assumptions on the form of h. We consider
the following structural form:

h(x) = sign(w>x+ b),

that is, h classifies x according to which side of the hyperplane H = {z : w>z + b = 0} that x belongs to.

Our job is to choose the best fitting w, b using the data {(xi, yi)}i∈[n]. A well-known optimization model to
do this is the support vector machine (SMV):

min
w,b

1

n

∑
i∈[n]

max{0, 1− yi(w>xi + b)}.

(a) (20 points) To improve out-of-sample predictions, a regularization term τ
2‖w‖

2
2 is often added to the

objective, where τ > 0. Therefore the problem we solve is

min
w,b

τ2‖w‖22 +
1

n

∑
i∈[n]

max{0, 1− yi(w>xi + b)}

 .

Formulate this as a convex optimization problem with quadratic objective and linear constraints, then
derive the Lagrange dual.

(b) (10 points) At optimality, the primal optimal vector w takes the form of a weighted sum of data points:

w =
∑
i∈[n]

γi(yixi).

The indices i where γi > 0 are the so-called support vectors. Describe the relationship between si, the
data point (xi, yi) and the function w>z + b for the support vectors.
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