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1 Outline

In this lecture, we study

• Taylor approximation interpretation,

• Convergence of gradient descent.

2 Introduction to gradient descent

2.1 Gradient descent method

In the last lecture, we learned that the following provides a general template for the gradient descent
algorithm.

Algorithm 1 Gradient descent method

Initialize x1 ∈ dom(f).
for t = 1, . . . , T do

xt+1 = xt − ηt∇f(xt) for a step size ηt > 0.
end for

We also discussed applying gradient descent to find a minimizer of function f(x) = 2x2+3x : R→ R.
We observed that the minimizer of f is given by x∗ = −3/4 and that gradient descent with a
constant step size ηt = η proceeds with the following update rule.

xt+1 = xt − η∇f(xt) = xt − η(4xt + 3) = (1− 4η)xt − 3η

Then it follows that

xt+1 = (1− 4η)t
(
x1 +

3

4

)
− 3

4
.

Since x∗ = −3/4, this implies that

|xT+1 − x∗| = O
(
(1− 4η)T

)
where xT+1 is the solution obtained after running gradient descent for T iterations. We call
x1, . . . , xT+1 iterates.

• If η is chosen to satisfy |1− 4η| < 1, then (1− 4η)T converges to zero as T →∞.

• Note that

f(xT+1)− f(x∗) = 2(xT+1 − x∗)2 + (4x∗ + 3)(xT+1 − x∗).

When |1− 4η| < 1, (1− 4η)T converges slower than (1− 4η)2T . Hence, we have

|f(xT+1)− f(x∗)| ≤ O
(
(1− 4η)T

)
.

• Therefore, after T = O(log(1/ε)) iterations, we have

|f(xT+1)− f(x∗)| ≤ ε.
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2.2 Taylor approximation interpretation

Given a differentiable function f : Rd → R and a point xt ∈ dom(f), the first-order Taylor
approximation of f at xt is given by

f(x) ≈ f(xt) +∇f(xt)
>(x− xt).

If f is convex, then by the first-order characterization of convexity, we know that the first-order
Taylor approximation is a lower bound on f . Moreover, as it provides an approximation of f , we
can try to minimize f(x) ≈ f(xt) +∇f(xt)

>(x− xt) instead of f . However, the first-order Taylor
approximation is a linear function, which means that

min
x

{
f(xt) +∇f(xt)

>(x− xt)
}

= −∞.

Instead of minimizing the first-order Taylor approximation directly, we add a proximity term as
follows.

f(x) ≈ f(xt) +∇f(xt)
>(x− xt) +

1

2ηt
‖x− xt‖22︸ ︷︷ ︸

proximity term

.

When minimizing the second approximation, we cannot choose a solution that is too far from xt,
for otherwise, the corresponding value will be high due to the proximity term. Again, we minimize
the approximation instead of f and take a unique minimizer xt+1 as follows.

xt+1 ∈ argmin
x

{
f(xt) +∇f(xt)

>(x− xt) +
1

2ηt
‖x− xt‖22

}
.

This gives us an iterative algorithm for minimizing f . Again, the proximity term prevents the
solution from being too far away from the initial point xt. The larger ηt is, the closer the solution
xt+1 is to the starting point xt. In fact, there is a closed-form expression for xt+1. Recall that
the approximation with the proximity term is differentiable, and therefore, it follows from the
optimality condition that

∇f(xt) +
1

ηt
(xt+1 − xt) = 0.

This is equivalent to
xt+1 = xt − ηt∇f(xt),

which is precisely the gradient descent iteration.

3 Convergence of gradient descent

In this section, we cover some convergence results for the gradient descent method. Here, the term
“convergence” simply means convergence to an optimal solution or the optimal value. When we
talk about convergence results, we often care about the rate of convergence, which measures how
quickly a given algorithm converges. We discussed above that it is crucial to choose proper step
sizes to achieve convergence. In the previous example with f(x) = 2x2+3x, we used a constant step
size η satisfying |1− 4η| < 1 to guarantee convergence, and if |1− 4η| were greater than 1, gradient
descent would not converge. Moreover, the convergence rate was O(ct) where c = |1− 4η| < 1, so
gradient descent converges exponentially fast. Based on this, we said that to achieve an ε-optimal
solution, meaning that the difference between its value and the optimal value is at most ε, we need
only O(log(1/ε)) iterations. Basically,
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• choosing proper step sizes,

• analyzing convergence rate, and

• analyzing a required number of iterations

will be the main subjects of this section.

3.1 Lipschitz continuous functions

We say that a differentiable function is Lipschitz continuous if there exists some L > 0 such that

|f(x)− f(y)| ≤ L‖x− y‖2

for any x, y ∈ Rd. More precisely, we say that f is L-Lipschitz continuous in the norm ‖ · ‖2. This
is equivalent to

‖∇f(x)‖2 ≤ L

for any x ∈ Rd.

Theorem 9.1. Let f : Rd → R be L-Lipschitz continuous in the `2-norm and convex, and let
{xt : t = 1, . . . , T} be the sequence of iterates generated by gradient descent with step size

ηt =
‖x1 − x∗‖2
L
√
T

for each t. Then

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ L‖x1 − x∗‖2√

T

where x∗ is an optimal solution to minx∈Rd f(x).

Here, we take the average of the points x1, . . . , xT . Hence, the convergence rate is O(1/
√
T ). This

means that after O(1/ε2) iterations, we have

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ ε.

In fact, Lipschitz continuity extends to non-differentiable functions, and gradient descent guaran-
tees the same convergence rate for any non-differentiable functions as long as they are Lipschitz
continuous.

Proof of Theorem 9.1. Let η = ‖x1 − x∗‖2/L
√
T . Then ηt = η for each t ≥ 1. Note that

‖xt+1 − x∗‖22 = ‖xt − η∇f(xt)− x∗‖22
= ‖xt − x∗‖22 − 2η∇f(xt)

>(xt − x∗) + η2‖∇f(xt)‖22
≤ ‖xt − x∗‖22 − 2η(f(xt)− f(x∗)) + η2‖∇f(xt)‖22

where the inequality follows from f(x∗) ≥ f(xt) +∇f(xt)
>(x∗ − xt). Then it follows that

f(xt)− f(x∗) ≤ 1

2η

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+
η

2
‖∇f(xt)‖22.
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Summing this over t = 1, . . . , T and dividing the resulting one by T , we obtain

1

T

T∑
t=1

f(xt)− f(x∗) ≤ 1

2ηT

(
‖x1 − x∗‖22 − ‖xT+1 − x∗‖22

)
+

η

2T

T∑
t=1

‖∇f(xt)‖22

≤ ‖x1 − x
∗‖22

2ηT
+
η

2
L2

=
L‖x1 − x∗‖2√

T

where the second inequality is because ‖xT+1−x∗‖2 ≥ 0 and ‖∇f(xt)‖2 ≤ L. Lastly, as f is convex,

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ 1

T

T∑
t=1

f(xt)− f(x∗) ≤ L‖x1 − x∗‖2√
T

,

as required.

3.2 Smooth functions

We say that a differentiable function f : Rd → R is smooth if there exists some β > 0 such that

‖∇f(x)−∇f(y)||2 ≤ β‖x− y‖2

holds for any x, y ∈ Rd. More precisely, we say that f is β-smooth in the norm ‖ · ‖2. Recall that
a convex function f satisfies

f(y) ≥ f(x) +∇f(x)>(y − x).

If f is β-smooth, then

f(y) ≤ f(x) +∇f(x)>(y − x) +
β

2
‖y − x‖22.

Theorem 9.2. Let f : Rd → R be β-smooth and convex, and let {xt : t = 1, . . . , T + 1} be the
sequence of iterates generated by gradient descent with step size

ηt =
1

β

for each t. Then

f(xT+1)− f(x∗) ≤ β‖x1 − x∗‖22
2T

where x∗ is an optimal solution to minx∈Rd f(x).

Here, x1 and x∗ are some fixed vectors, which means that ‖x1 − x∗‖2 is a constant. Moreover, the
smoothness parameter β is also a constant. Hence, the convergence rate is O(1/T ). Therefore,
after T = O(1/ε) iterations, we have

f(xT+1)− f(x∗) ≤ ε.
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3.3 Lipschitz continuous and strongly convex functions

We say that a function is strongly convex in the `2-norm if there exists some α > 0 such that

f(x)− α

2
‖x‖22

is convex. More precisely, we say that f is α-strongly convex in the norm ‖ · ‖2. If f is α-strongly
convex, then we have

f(y) ≥ f(x) +∇f(x)>(y − x) +
α

2
‖y − x‖22.

If we assume strong convexity, then we deduce a faster convergence.

Theorem 9.3. Let f : Rd → R be L-Lipschitz continuous and α-strongly convex in the `2-norm,
and let {xt : t = 1, . . . , T} be the sequence of iterates generated by gradient descent with step size

ηt =
2

α(t+ 1)

for each t. Then

f

(
T∑
t=1

2t

T (T + 1)
xt

)
− f(x∗) ≤ 2L2

α(T + 1)

where x∗ is an optimal solution to minx∈Rd f(x).

Here, we take an weighted average of the points x1, . . . , xT . The converge rate is O(1/T ), and after
O(1/ε) iterations, we have

f

(
T∑
t=1

2t

T (T + 1)
xt

)
− f(x∗) ≤ ε.

3.4 Smooth and strongly convex functions

If function f is β-smooth and α-strongly convex in the `2-norm, then it follows that

α

2
‖y − x‖22 ≤ (f(y)− f(x))−∇f(x)>(y − x) ≤ β

2
‖y − x‖22.

Here, we call κ = β/α the condition number of f . In fact, when f is both smooth and strongly
convex, it leads to a drastic improvement in the convergence rate. The convergence rate depends
on the condition number κ.

Theorem 9.4. Let f : Rd → R be β-smooth and α-strongly convex in the `2-norm, and let {xt :
t = 1, . . . , T + 1} be the sequence of iterates generated by gradient descent with sep size

ηt =
2

α+ β

for each t. Then

f(xT+1)− f(x∗) ≤ β

2
exp

(
− 4T

κ+ 1

)
‖x1 − x∗‖22

where x∗ is an optimal solution to minx∈Rd f(x).

Note that exp(−4/(κ+1)) < 1, and therefore, the convergence rate is O(cT ) where c = exp(−4/(κ+
1)) < 1. Hence, we achieve a linear rate of convergence, and after T = O(log(1/ε)) iterations, we
have

f(xT+1)− f(x∗) ≤ ε.
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