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1 Outline

In this lecture, we study

e quadratic programming,
e semidefinite programming,
e conic programming,

e derivation of dual conic programs.

2 Quadratic programming
A quadratic program (QP) is an optimization problem of the following form.
minimize %xTQx +p'z
subject to Az >b
The quadratic program is convex only if () is positive semidefinite.
2.1 Example: portfolio optimization
We studied the following formulation of portfolio optimization.

maximize ,uTx — xS
subject to 1Tz = 1,

r e RY
where v > 0 and X is a covariance matrix that is positive semidefinite. Note that
max{f(z): € C}=—min{—f(z): z€C}
holds for any objective function f and any feasible set C'. Thus, the formulation is equivalent to

minimize ~z' Xz —p'x
subject to 1Tz =1
x>0

which is a quadratic program because v > 0 and ¥ is positive semidefinite.



2.2 Example: support vector machine

The next example is the formulation of support vector machine.

1 n
mwigl Mwl|3 + - ;max{o, 1 —yi(w'z; —b)}.

)

Here, |w||3 = w'w = w'Iw where I is the identity matrix, and therefore, ||w||3 is a convex

quadratic function. Moreover, the max terms in the objective can be replaced by adding some
auxiliary variables. Note that the formulation is equivalent to

o 1<
minimize Mw'w + — E t;
n
i=1

subject to t; > max{0, 1 —y;(w'z; —b)} fori=1,...,n.
Next, we can rewrite the constraints as linear constraints as the following.
1 n
minimize Aw ' w + - Z; t;
1=

subject to ¢ > 1 —yi(w ' x; —b) fori=1,...,n,
t; >0 fori=1,...,n

Therefore, it is a convex quadratic program with a quadratic objective and linear constraints.
2.3 Example: LASSO
Recall that LASSO can be formulated as
. 1 2
min ﬁHy — XBllz + AllBll-
Note that

ly—XBl3=(y—XB) (y—XB)=B"X"XB-2y XB+y'y

Here, X " X is positive semidefinite because
w' X" Xu=|Xul2>0

for any vector u. In addition, y'y is a constant term which can be ignored from the objective.
Moreover, we can replace the ||5]|; term by an auxiliary variable and a set of linear constraints. To
be specific, the problem is equivalent to

1 2
minimize —8'XTXB8— Zy ' X8+ Xt
n n
d
subject to t > Zsi,
i=1

$; > pB>—s;fori=1,...,d.

Hence, LASSO can be reformulated as a quadratic program.



3 Semidefinite programming

3.1 Motivation: max-cut

Semidefinite programming provides useful tools for solving difficult combinatorial optimization
problems. For example, we consider the “max-cut problem” defined as follows. Given a graph
G = (V, E), find a partition the vertex set V' so that the number of edges crossing the partition is
maximized. Here, a partition (Vi,V3) of V' consists of two sets Vi, Vo satisfying V4 U Vo = V' and
V1 NVa =0, and the set of edges crossing the partition is basically {uv € E : u € Vi,v € Va}. For
example, in Figure 6.1, there is a graph of 5 vertices partitioned into red and black vertices, and
the edges highlighted are the ones crossing the partition.

Figure 6.1: Edges crossing a partition

The problem can be formulated by the following (discrete) optimization problem:
. 1 -z
maximize Z _—
ijEE
subject to x; € {—1,1} fori e V.

As long as z; € R, z; € {—1,1} is equivalent to .1,‘? = 1. Hence, the formulation is equivalent to

1 —z;x;
maximize Z —d
ijeE
subject to z7 =1 for i € V.
Let d = |V|. Then we consider a d x d matrix X whose entry at ith row and jth column, Xj;, is
x;xj. Then we have that X = zz |, which is the outer product of vector z and itself. In fact, X

is of the form X = zz " if and only if X is positive semidefinite and the rank of X is precisey 1.
What this implies is that, the max-cut formulation can be rewritten as

. Z 1—- X5
maximize _—

ijeE 2

subject to X; =1forieV,
X =0,
rank(X) = 1.



Here, the constrsint rank(X) = 1 is nonconvex. A common approach is to take out the nonconvex
constraint and consider

. 1-X55
maximize Z —
ijelE
subject to X; =1fori eV,
X > 0.

This is often called the semidefinite programming (SDP) relazation of max-cut.
3.2 General form

More generally, a semidefinite program is an optimization problem of the following form. Let C
and Aq,..., A, be d X d matrices, and we have

minimize tr(C'T X)

subject to  tr(A; X)=b,for £=1,...,m (SDP)
X>=0
where
d d d d
tr(CTX) =) CyXi; and tr(4/ X) = ) (Ar)i;Xi;.
i=1 j=1 i=1 j=1

Here, if we view matrix X as a (d x d)-dimensional vector, then the objective and the equality
constraints are “linear” in X. Hence, (SDP) is analogous to linear programming. Recall that we
defined the linear programming (LP) dual of a given linear program. Likewise, we may define the
notion of semidefinite programming (SDP) dual. The dual of (SDP) is

maximize Z beye
= (dual-SDP)
subject to ZygAg <C
=1
where Y )" yeAy < C means C' — Y%, yeAy is positive semidefinite. If an optimization is in either
form, we say that it is a semidefinite program.

We will study more about duality later in this course. We have dicussed LP duality, and in
particular, we covered how to derive the dual of a linear program and learned duality theorems.
The notion of duality extends to more general classes of convex programming problems. We will
learn how to derive the dual of a given optimization problem, and we will define the associated
weak and strong duality statements.

3.3 Example: quadratic programming
(QP) can be rewritten as
minimize ¢
subject to Ax > b,
' Qr+2p'x < 2.
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In fact, this can be expressed as an instance of (dual-SDP) by rewriting Az > band z' Qz+2p 'z <
2t using some positive semidefinite matrices.

Note that Az — b is a vector and Ax > b means that the entries of Ax — b are nonnegative.
Diag(Az — b) is the diagonal matrix whose diagonal entries are the components of Az —b. In fact,
Ax — b > 0 holds if and only if

Diag(Ax —b) = 0

which means that Diag(Ax — b) is positive semidefinite.

Next we consider ' Qx + 2p" 2 < 2t where Q is positive semidefinite.
Lemma 6.1. For any positive semidefinite matriz Q, there exists a matriz P such that Q = P' P.

Proof. By the eigendecomposition theorem for symmetric marices, Q can be written as Q = UAU "
where U is an orthonormal matrix and A is a diagonal matrix whose diagonal entries consist of the
eigenvalues of (). Since @) is positive semidefinite, all its eigenvalues are nonnegative, and therefore,
all diagonal entries of A are nonnegative. Then A'/2 can be properly defined by taking the square
root of each diagonal entry of A. Then A = (AY/2)TAY2 as AY/2 is symmetric as well. Then

Q=UAUT = UAYYHTAY2YT = (AV20T)T(AV2pT),
Taking P = AY2UT, we have Q = PT P. O
By Lemma 6.1, 2" Qz + 2p ' < 2t is equivalent to
' PTPr+2p x<2t
for some matrix P. We also need the following result.

Lemma 6.2. Let y € RY. Theny'y < s is equivalent to

.
sy

—
<y I)‘O

where I is the d x d identity matriz.

=0 (8 ) (L) =s-iuzo

(=) Let u € R and v € R, Then

-
V(S Y uy _ 2 T T
(u,v )<y I><U>—us+2uy v+v v

>uly Ty +2uy v4v'v
= (uy +v) " (uy +v)
> 0.

Proof. (<) Note that

Therefore, the matrix is positive semidefinite as required. O



By Lemma 6.2, 2" PT Pz + 2p "2 < 2t is equivalent to

2t —2p'x (Px)"
—
( Px I = 0.

Finally, we have shown that (QP) is equivalent to the following optimization problem.
minimize ¢

subject to Diag(Ax —b) = 0,

2t —2p'x (Px)"
—
< Px 1 = 0.

4 Conic programming

Recall that a linear program (LP) is an optimization problem with a linear objective and a system
of linear inequality constraints, as follows.

minimize ¢'z
. (LP)
subject to Ax > b.
Here, if the rows of A are a{ ,...,a, and the components of b are by, ..., by, then the linear system
Az > b consists of linear inequality constraints alTaf > by,..., al x > b,. Note that Ax itself is a
column vector whose components are alT:B, e ,aI z. Basically, the arithmetic “>” compares two

column vectors Ax and b coordinatewise.

Ax > b is equivalent to Az — b > 0, which means that each component of the column vector Az — b
is nonnegative. We know that R’} is the nonnegative orthant, that is, the set of vectors all whose
coordinates are nonnegative. Hence, Az — b > 0 is equivalent to R’. Then the following is an
equivalent expression for the above linear program.

minimize ¢'z

subject to  Ax —b € R’}

Let us take a closer look at the nonnegative orthant R} . It satisfies the following properties.

1. R’}r is a convex cone.

2. R% is pointed, which means that if v € R} and —v € R"}, then it must be that v = 0.
In fact, R} is not just a pointed convex cone. There are other important properties of R’}.

3. R is closed, which means that for any convergent sequence {v"},cn contained in R, its
limit lim, ;. v™ also belongs to R} .

4. R has a nonempty interior. Equivalently, R} contains an interior point. A vector v is an
interior point of a set K if there exists an open ball around v which is fully contained in K.
Then the interior of a set K, denoted int(K), is defined as the set of all its interior points.
The interior of R"} is R"} ,, the positive orthant.

In summary, the nonnegative orthant R" is a pointed and closed convex cone with a nonempty
interior. In fact, there are other closed convex cones that are pointed and have a nonempty interior.
For example,



e The Lorentz cone.
{1, @1, 2n) T €R™: ||(®1, -, Tpe1) |2 < @0}

Other equivalent names include the second-order cone, the ice-cream cone, and the fo-norm
cone. Its interior is given by

{(@1,.. . Tne1,20) T €ER": |[(21,..., 20 1) |l2 < zp}.

e The positive semidefinite cone.
{Ses?: z"Sx >0 forall z e R%.

Its interior is the positive definite cone, the set of all positive definite matrices.

A conic program is an optimization problem defined with a pointed and closed convex cone K with
a nonempty interior, as follows.

minimize ¢z
. (CP)
subject to Ax —b € K.

Again, when K = R, the problem reduces to a linear program. As we use the arithmetic “>” to
indicate that a vector belongs to R” , we use notation “>g” to indicate that a vector belongs to
cone K. Basically, Az — b € K is equivalent to Ax — b >, 0 and Az >x b.

Example 6.3. When K is the second-order cone, the conic program (CP) is referred to as a second-
order cone program. When K is the positive semidefinite cone, (CP) is a semidefinite program.

5 Conic duality

We know that the dual of the linear program (LP) is given by
maximize b'y
subject to ATy =c (dual-LP)
y > 0.

Let us see how to derive the dual! Note that for any y > 0 (or y € R"}) and system Az > b, we
have y ' (Az — b) > 0 because y > 0 and Az — b > 0. Then it follows that

y' Az >y 'b.
If y further satisfies
Aly=c,
then we have
y Ar=c'z >y b=0b"y.

In summary, if we take x € R? satisfying Az > b and y € R” with y > 0 and ATy = ¢, then
¢z is always lower bounded by bTy. Then we can try to find the best possible lower bound by
maximizing the value of b"y, which is precisely what (dual-LP) does!

Following the basic idea behind obtaining the dual linear program, we may obtain and define the
dual of the conic program (CP). The dual cone of K C R"™ is defined as

K*:{yeRn: y' x>0 Va:EK}.

The dual cone of the nonnegative orthant Ri is ]R‘fr itself.
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Example 6.4. The dual cone of the positive semidefinite cone Si is given by
d d
X e RdXd : tr(XTS) = ZZXUSU >0 VS e Si
i=1 j=1

In fact, the positive semidefinite cone Si is self-dual, meaning that its dual cone is itself.

Theorem 6.5 (See Theorem 2.3.1 in [BTNO1]). Let K be a pointed and closed convex cone with
nonempty interior. Then its dual cone K* is also a pointed and closed convexr cone with nonempty
interior. Moreover, (K*)* = K.

Let us see how to derive and define the dual of the conic program!
(1) Take z such that Az —b € K and y € K*. Then y' (Az — b) > 0, and therefore,
y' Az >y 'b.
(2) If y € K* further satisfies ATy = ¢, then

cle=y Az >yTb=0b"y.

(3) Then
maximize b'y
subject to ATy =c (dual-CP)
ye K*

provides a lower bound on the value of (CP). Here, (dual-CP) is the dual conic program
of (CP).

Taking the dual of a maximization problem is similar; the dual will give an upper bound on the
problem.

Example 6.6. We consider the following semidefinite program.

m
maximize Z beye
(=1

m
subject to ZygAg <C
/=1

To obtain its dual, we take a positive semidefinite matrix X. As the positive semidefinite cone S‘fr
is self-dual, it follows that

tr (XT (C - iW/M)) =tr(CTX) — iyg tr((Ag) T X) > 0.

/=1 /=1

If X satisfies
tl"((Ag)TX) =b, forl=1,...,m,
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then .
tr(CTX) > ZW tr((Ag) ' X) = Zbeyz
1—1

This means that
minimize tr(C'T X)
subject to  tr((A4y)"X)=b, forl=1,...,m
X >0

provides an upper bound on the first semidefinite program.
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