1 Outline

In this lecture, we study

- quadratic programming,
- semidefinite programming,
- conic programming,
- derivation of dual conic programs.

2 Quadratic programming

A quadratic program (QP) is an optimization problem of the following form.

minimize
$$\frac{1}{2}x^{\top}Qx + p^{\top}x$$
 (QP)
subject to $Ax \ge b$

The quadratic program is convex only if Q is positive semidefinite.

2.1 Example: portfolio optimization

We studied the following formulation of portfolio optimization.

maximize
$$\mu^{\top} x - \gamma x^{\top} \Sigma x$$

subject to $1^{\top} x = 1,$
 $x \in \mathbb{R}^{n}_{+}$

where $\gamma > 0$ and Σ is a covariance matrix that is positive semidefinite. Note that

$$\max \{ f(x) : x \in C \} = -\min \{ -f(x) : x \in C \}$$

holds for any objective function f and any feasible set C. Thus, the formulation is equivalent to

minimize
$$\gamma x^{\top} \Sigma x - \mu^{\top} x$$

subject to $1^{\top} x = 1$
 $x \ge 0$

which is a quadratic program because $\gamma > 0$ and Σ is positive semidefinite.

2.2 Example: support vector machine

The next example is the formulation of support vector machine.

$$\min_{w,b} \quad \lambda \|w\|_2^2 + \frac{1}{n} \sum_{i=1}^n \max\{0, \ 1 - y_i(w^\top x_i - b)\}.$$

Here, $||w||_2^2 = w^{\top}w = w^{\top}Iw$ where *I* is the identity matrix, and therefore, $||w||_2^2$ is a convex quadratic function. Moreover, the max terms in the objective can be replaced by adding some auxiliary variables. Note that the formulation is equivalent to

minimize
$$\lambda w^{\top} w + \frac{1}{n} \sum_{i=1}^{n} t_i$$

subject to $t_i \ge \max\{0, 1 - y_i(w^{\top} x_i - b)\}$ for $i = 1, \dots, n$.

Next, we can rewrite the constraints as linear constraints as the following.

minimize
$$\lambda w^{\top} w + \frac{1}{n} \sum_{i=1}^{n} t_i$$

subject to $t_i \ge 1 - y_i (w^{\top} x_i - b)$ for $i = 1, \dots, n$,
 $t_i \ge 0$ for $i = 1, \dots, n$.

Therefore, it is a convex quadratic program with a quadratic objective and linear constraints.

2.3 Example: LASSO

Recall that LASSO can be formulated as

$$\min_{\beta} \quad \frac{1}{n} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1.$$

Note that

$$\|y - X\beta\|_2^2 = (y - X\beta)^\top (y - X\beta) = \beta^\top X^\top X\beta - 2y^\top X\beta + y^\top y$$

Here, $X^{\top}X$ is positive semidefinite because

$$u^{\top} X^{\top} X u = \|X u\|_{2}^{2} \ge 0$$

for any vector u. In addition, $y^{\top}y$ is a constant term which can be ignored from the objective. Moreover, we can replace the $\|\beta\|_1$ term by an auxiliary variable and a set of linear constraints. To be specific, the problem is equivalent to

minimize
$$\frac{1}{n} \beta^{\top} X^{\top} X \beta - \frac{2}{n} y^{\top} X \beta + \lambda t$$

subject to $t \ge \sum_{i=1}^{d} s_i,$
 $s_i \ge \beta \ge -s_i \text{ for } i = 1, \dots, d.$

Hence, LASSO can be reformulated as a quadratic program.

3 Semidefinite programming

3.1 Motivation: max-cut

Semidefinite programming provides useful tools for solving difficult combinatorial optimization problems. For example, we consider the "max-cut problem" defined as follows. Given a graph G = (V, E), find a partition the vertex set V so that the number of edges crossing the partition is maximized. Here, a partition (V_1, V_2) of V consists of two sets V_1, V_2 satisfying $V_1 \cup V_2 = V$ and $V_1 \cap V_2 = \emptyset$, and the set of edges crossing the partition is basically $\{uv \in E : u \in V_1, v \in V_2\}$. For example, in Figure 6.1, there is a graph of 5 vertices partitioned into red and black vertices, and the edges highlighted are the ones crossing the partition.

Figure 6.1: Edges crossing a partition

The problem can be formulated by the following (discrete) optimization problem:

maximize
$$\sum_{ij\in E} \frac{1-x_i x_j}{2}$$

subject to $x_i \in \{-1, 1\}$ for $i \in V$.

As long as $x_i \in \mathbb{R}, x_i \in \{-1, 1\}$ is equivalent to $x_i^2 = 1$. Hence, the formulation is equivalent to

maximize
$$\sum_{ij\in E} \frac{1-x_i x_j}{2}$$

subject to $x_i^2 = 1$ for $i \in V$.

Let d = |V|. Then we consider a $d \times d$ matrix X whose entry at *i*th row and *j*th column, X_{ij} , is $x_i x_j$. Then we have that $X = xx^{\top}$, which is the outer product of vector x and itself. In fact, X is of the form $X = xx^{\top}$ if and only if X is positive semidefinite and the rank of X is precisey 1. What this implies is that, the max-cut formulation can be rewritten as

maximize
$$\sum_{ij \in E} \frac{1 - X_{ij}}{2}$$
subject to $X_{ii} = 1$ for $i \in V$,
 $X \succeq 0$,
rank $(X) = 1$.

Here, the constraint $\operatorname{rank}(X) = 1$ is nonconvex. A common approach is to take out the nonconvex constraint and consider

maximize
$$\sum_{ij\in E} \frac{1-X_{ij}}{2}$$

subject to $X_{ii} = 1$ for $i \in V_i$
 $X \succeq 0.$

This is often called the *semidefinite programming (SDP) relaxation* of max-cut.

3.2 General form

More generally, a *semidefinite program* is an optimization problem of the following form. Let C and A_1, \ldots, A_m be $d \times d$ matrices, and we have

minimize
$$\operatorname{tr}(C^{\top}X)$$

subject to $\operatorname{tr}(A_{\ell}^{\top}X) = b_{\ell}$ for $\ell = 1, \dots, m$ (SDP)
 $X \succeq 0$

where

$$\operatorname{tr}(C^{\top}X) = \sum_{i=1}^{d} \sum_{j=1}^{d} C_{ij}X_{ij}$$
 and $\operatorname{tr}(A_{\ell}^{\top}X) = \sum_{i=1}^{d} \sum_{j=1}^{d} (A_{\ell})_{ij}X_{ij}$

Here, if we view matrix X as a $(d \times d)$ -dimensional vector, then the objective and the equality constraints are "linear" in X. Hence, (SDP) is analogous to linear programming. Recall that we defined the linear programming (LP) dual of a given linear program. Likewise, we may define the notion of semidefinite programming (SDP) dual. The *dual* of (SDP) is

maximize
$$\sum_{\ell=1}^{m} b_{\ell} y_{\ell}$$
subject to
$$\sum_{\ell=1}^{m} y_{\ell} A_{\ell} \preceq C$$
(dual-SDP)

where $\sum_{\ell=1}^{m} y_{\ell} A_{\ell} \leq C$ means $C - \sum_{\ell=1}^{m} y_{\ell} A_{\ell}$ is positive semidefinite. If an optimization is in either form, we say that it is a semidefinite program.

We will study more about duality later in this course. We have dicussed LP duality, and in particular, we covered how to derive the dual of a linear program and learned duality theorems. The notion of duality extends to more general classes of convex programming problems. We will learn how to derive the dual of a given optimization problem, and we will define the associated weak and strong duality statements.

3.3 Example: quadratic programming

(QP) can be rewritten as

minimize
$$t$$

subject to $Ax \ge b$,
 $x^{\top}Qx + 2p^{\top}x \le 2t$.

In fact, this can be expressed as an instance of (dual-SDP) by rewriting $Ax \ge b$ and $x^{\top}Qx + 2p^{\top}x \le 2t$ using some positive semidefinite matrices.

Note that Ax - b is a vector and $Ax \ge b$ means that the entries of Ax - b are nonnegative. Diag(Ax - b) is the diagonal matrix whose diagonal entries are the components of Ax - b. In fact, $Ax - b \ge 0$ holds if and only if

$$\operatorname{Diag}(Ax - b) \succeq 0$$

which means that Diag(Ax - b) is positive semidefinite.

Next we consider $x^{\top}Qx + 2p^{\top}x \leq 2t$ where Q is positive semidefinite.

Lemma 6.1. For any positive semidefinite matrix Q, there exists a matrix P such that $Q = P^{\top}P$.

Proof. By the eigendecomposition theorem for symmetric marices, Q can be written as $Q = U\Lambda U^{\top}$ where U is an orthonormal matrix and Λ is a diagonal matrix whose diagonal entries consist of the eigenvalues of Q. Since Q is positive semidefinite, all its eigenvalues are nonnegative, and therefore, all diagonal entries of Λ are nonnegative. Then $\Lambda^{1/2}$ can be properly defined by taking the square root of each diagonal entry of Λ . Then $\Lambda = (\Lambda^{1/2})^{\top} \Lambda^{1/2}$ as $\Lambda^{1/2}$ is symmetric as well. Then

$$Q = U\Lambda U^{\top} = U(\Lambda^{1/2})^{\top} \Lambda^{1/2} U^{\top} = (\Lambda^{1/2} U^{\top})^{\top} (\Lambda^{1/2} U^{\top}).$$

Taking $P = \Lambda^{1/2} U^{\top}$, we have $Q = P^{\top} P$.

By Lemma 6.1, $x^{\top}Qx + 2p^{\top}x \leq 2t$ is equivalent to

$$x^{\top}P^{\top}Px + 2p^{\top}x \le 2t$$

for some matrix P. We also need the following result.

Lemma 6.2. Let $y \in \mathbb{R}^d$. Then $y^{\top}y \leq s$ is equivalent to

$$\begin{pmatrix} s & y^{\top} \\ y & I \end{pmatrix} \succeq 0$$

where I is the $d \times d$ identity matrix.

Proof. (\Leftarrow) Note that

$$(1, -y^{\top}) \begin{pmatrix} s & y^{\top} \\ y & I \end{pmatrix} \begin{pmatrix} 1 \\ -y \end{pmatrix} = s - y^{\top} y \ge 0.$$

 (\Rightarrow) Let $u \in \mathbb{R}$ and $v \in \mathbb{R}^d$. Then

$$(u, v^{\top}) \begin{pmatrix} s & y^{\top} \\ y & I \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = u^2 s + 2uy^{\top} v + v^{\top} v$$

$$\geq u^2 y^{\top} y + 2uy^{\top} v + v^{\top} v$$

$$= (uy + v)^{\top} (uy + v)$$

$$> 0.$$

Therefore, the matrix is positive semidefinite as required.

By Lemma 6.2, $x^{\top}P^{\top}Px + 2p^{\top}x \leq 2t$ is equivalent to

$$\begin{pmatrix} 2t - 2p^{\top}x & (Px)^{\top} \\ Px & I \end{pmatrix} \succeq 0.$$

Finally, we have shown that (QP) is equivalent to the following optimization problem.

minimize
$$t$$

subject to $\text{Diag}(Ax - b) \succeq 0$,
 $\begin{pmatrix} 2t - 2p^{\top}x & (Px)^{\top} \\ Px & I \end{pmatrix} \succeq 0.$

4 Conic programming

Recall that a linear program (LP) is an optimization problem with a linear objective and a system of linear inequality constraints, as follows.

$$\begin{array}{ll} \text{minimize} & c^{\top}x \\ \text{subject to} & Ax \ge b. \end{array}$$
(LP)

Here, if the rows of A are $a_1^{\top}, \ldots, a_n^{\top}$ and the components of b are b_1, \ldots, b_n , then the linear system $Ax \ge b$ consists of linear inequality constraints $a_1^{\top}x \ge b_1, \ldots, a_n^{\top}x \ge b_n$. Note that Ax itself is a column vector whose components are $a_1^{\top}x, \ldots, a_n^{\top}x$. Basically, the arithmetic " \ge " compares two column vectors Ax and b coordinatewise.

 $Ax \ge b$ is equivalent to $Ax - b \ge 0$, which means that each component of the column vector Ax - b is nonnegative. We know that \mathbb{R}^n_+ is the nonnegative orthant, that is, the set of vectors all whose coordinates are nonnegative. Hence, $Ax - b \ge 0$ is equivalent to \mathbb{R}^n_+ . Then the following is an equivalent expression for the above linear program.

$$\begin{array}{ll} \text{minimize} & c^{\top}x\\ \text{subject to} & Ax - b \in \mathbb{R}^n_+ \end{array}$$

Let us take a closer look at the nonnegative orthant \mathbb{R}^n_+ . It satisfies the following properties.

- 1. \mathbb{R}^n_+ is a convex cone.
- 2. \mathbb{R}^n_+ is *pointed*, which means that if $v \in \mathbb{R}^n_+$ and $-v \in \mathbb{R}^n_+$, then it must be that v = 0.

In fact, \mathbb{R}^n_+ is not just a pointed convex cone. There are other important properties of \mathbb{R}^n_+ .

- 3. \mathbb{R}^n_+ is *closed*, which means that for any convergent sequence $\{v^n\}_{n\in\mathbb{N}}$ contained in \mathbb{R}^n_+ , its limit $\lim_{n\to\infty} v^n$ also belongs to \mathbb{R}^n_+ .
- 4. \mathbb{R}^n_+ has a nonempty *interior*. Equivalently, \mathbb{R}^n_+ contains an *interior point*. A vector v is an interior point of a set K if there exists an open ball around v which is fully contained in K. Then the interior of a set K, denoted int(K), is defined as the set of all its interior points. The interior of \mathbb{R}^n_+ is \mathbb{R}^n_{++} , the positive orthant.

In summary, the nonnegative orthant \mathbb{R}^n_+ is a pointed and closed convex cone with a nonempty interior. In fact, there are other closed convex cones that are pointed and have a nonempty interior. For example,

• The Lorentz cone.

$$\{(x_1, \dots, x_{n-1}, x_n)^\top \in \mathbb{R}^n : \|(x_1, \dots, x_{n-1})^\top\|_2 \le x_n\}$$

Other equivalent names include the second-order cone, the *ice-cream cone*, and the ℓ_2 -norm cone. Its interior is given by

$$\{(x_1,\ldots,x_{n-1},x_n)^{\top} \in \mathbb{R}^n : \|(x_1,\ldots,x_{n-1})^{\top}\|_2 < x_n\}.$$

• The positive semidefinite cone.

$$\{S \in \mathbb{S}^d : x^\top S x \ge 0 \text{ for all } x \in \mathbb{R}^d\}$$

Its interior is the positive definite cone, the set of all positive definite matrices.

A conic program is an optimization problem defined with a pointed and closed convex cone K with a nonempty interior, as follows.

$$\begin{array}{ll}\text{minimize} & c^{\top}x\\ \text{subject to} & Ax - b \in K. \end{array}$$
(CP)

Again, when $K = \mathbb{R}^n_+$, the problem reduces to a linear program. As we use the arithmetic " \geq " to indicate that a vector belongs to \mathbb{R}^n_+ , we use notation " \geq_K " to indicate that a vector belongs to cone K. Basically, $Ax - b \in K$ is equivalent to $Ax - b \geq_K 0$ and $Ax \geq_K b$.

Example 6.3. When K is the second-order cone, the conic program (CP) is referred to as a *second-order cone program*. When K is the positive semidefinite cone, (CP) is a semidefinite program.

5 Conic duality

We know that the dual of the linear program (LP) is given by

maximize
$$b^{\top}y$$

subject to $A^{\top}y = c$ (dual-LP)
 $y \ge 0.$

Let us see how to derive the dual! Note that for any $y \ge 0$ (or $y \in \mathbb{R}^n_+$) and system $Ax \ge b$, we have $y^{\top}(Ax - b) \ge 0$ because $y \ge 0$ and $Ax - b \ge 0$. Then it follows that

$$y^{\top}Ax \ge y^{\top}b.$$

If y further satisfies

$$A^{\top}y = c$$

then we have

$$y^{\top}Ax = c^{\top}x \ge y^{\top}b = b^{\top}y.$$

In summary, if we take $x \in \mathbb{R}^d$ satisfying $Ax \ge b$ and $y \in \mathbb{R}^n$ with $y \ge 0$ and $A^\top y = c$, then $c^\top x$ is always lower bounded by $b^\top y$. Then we can try to find the best possible lower bound by maximizing the value of $b^\top y$, which is precisely what (dual-LP) does!

Following the basic idea behind obtaining the dual linear program, we may obtain and define the dual of the conic program (CP). The *dual cone* of $K \subseteq \mathbb{R}^n$ is defined as

$$K^* = \left\{ y \in \mathbb{R}^n : y^\top x \ge 0 \ \forall x \in K \right\}.$$

The dual cone of the nonnegative orthant \mathbb{R}^d_+ is \mathbb{R}^d_+ itself.

Example 6.4. The dual cone of the positive semidefinite cone \mathbb{S}^d_+ is given by

$$\left\{ X \in \mathbb{R}^{d \times d} : \operatorname{tr}(X^{\top}S) = \sum_{i=1}^{d} \sum_{j=1}^{d} X_{ij} S_{ij} \ge 0 \quad \forall S \in \mathbb{S}_{+}^{d} \right\}.$$

In fact, the positive semidefinite cone \mathbb{S}^d_+ is *self-dual*, meaning that its dual cone is itself.

Theorem 6.5 (See Theorem 2.3.1 in [BTN01]). Let K be a pointed and closed convex cone with nonempty interior. Then its dual cone K^* is also a pointed and closed convex cone with nonempty interior. Moreover, $(K^*)^* = K$.

Let us see how to derive and define the dual of the conic program!

(1) Take x such that $Ax - b \in K$ and $y \in K^*$. Then $y^{\top}(Ax - b) \ge 0$, and therefore,

$$y^{\top}Ax \ge y^{\top}b.$$

(2) If $y \in K^*$ further satisfies $A^{\top}y = c$, then

$$c^{\top}x = y^{\top}Ax \ge y^{\top}b = b^{\top}y.$$

(3) Then

maximize
$$b^{\top}y$$

subject to $A^{\top}y = c$ (dual-CP)
 $y \in K^*$

provides a lower bound on the value of (CP). Here, (dual-CP) is the dual conic program of (CP).

Taking the dual of a maximization problem is similar; the dual will give an upper bound on the problem.

Example 6.6. We consider the following semidefinite program.

maximize
$$\sum_{\ell=1}^{m} b_{\ell} y_{\ell}$$

subject to $\sum_{\ell=1}^{m} y_{\ell} A_{\ell} \preceq C$

To obtain its dual, we take a positive semidefinite matrix X. As the positive semidefinite cone \mathbb{S}^d_+ is self-dual, it follows that

$$\operatorname{tr}\left(X^{\top}\left(C-\sum_{\ell=1}^{m}y_{\ell}A_{\ell}\right)\right)=\operatorname{tr}(C^{\top}X)-\sum_{\ell=1}^{m}y_{\ell}\cdot\operatorname{tr}((A_{\ell})^{\top}X)\geq 0.$$

If X satisfies

$$\operatorname{tr}((A_{\ell})^{\top}X) = b_{\ell} \quad \text{for } \ell = 1, \dots, m,$$

then

$$\operatorname{tr}(C^{\top}X) \ge \sum_{\ell=1}^{m} y_{\ell} \cdot \operatorname{tr}((A_{\ell})^{\top}X) = \sum_{\ell=1}^{m} b_{\ell}y_{\ell}.$$

This means that

minimize
$$\operatorname{tr}(C^{\top}X)$$

subject to $\operatorname{tr}((A_{\ell})^{\top}X) = b_{\ell}$ for $\ell = 1, \dots, m$
 $X \succeq 0$

provides an upper bound on the first semidefinite program.

References

[BTN01] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Optimization. Society for Industrial and Applied Mathematics, 2001. 6.5