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1 Outline

In this lecture, we study

• quadratic programming,

• semidefinite programming,

• conic programming,

• derivation of dual conic programs.

2 Quadratic programming

A quadratic program (QP) is an optimization problem of the following form.

minimize
1

2
x⊤Qx+ p⊤x

subject to Ax ≥ b
(QP)

The quadratic program is convex only if Q is positive semidefinite.

2.1 Example: portfolio optimization

We studied the following formulation of portfolio optimization.

maximize µ⊤x− γx⊤Σx

subject to 1⊤x = 1,

x ∈ Rn
+

where γ > 0 and Σ is a covariance matrix that is positive semidefinite. Note that

max {f(x) : x ∈ C} = −min {−f(x) : x ∈ C}

holds for any objective function f and any feasible set C. Thus, the formulation is equivalent to

minimize γx⊤Σx− µ⊤x

subject to 1⊤x = 1

x ≥ 0

which is a quadratic program because γ > 0 and Σ is positive semidefinite.
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2.2 Example: support vector machine

The next example is the formulation of support vector machine.

min
w,b

λ∥w∥22 +
1

n

n∑
i=1

max{0, 1− yi(w
⊤xi − b)}.

Here, ∥w∥22 = w⊤w = w⊤Iw where I is the identity matrix, and therefore, ∥w∥22 is a convex
quadratic function. Moreover, the max terms in the objective can be replaced by adding some
auxiliary variables. Note that the formulation is equivalent to

minimize λw⊤w +
1

n

n∑
i=1

ti

subject to ti ≥ max{0, 1− yi(w
⊤xi − b)} for i = 1, . . . , n.

Next, we can rewrite the constraints as linear constraints as the following.

minimize λw⊤w +
1

n

n∑
i=1

ti

subject to ti ≥ 1− yi(w
⊤xi − b) for i = 1, . . . , n,

ti ≥ 0 for i = 1, . . . , n.

Therefore, it is a convex quadratic program with a quadratic objective and linear constraints.

2.3 Example: LASSO

Recall that LASSO can be formulated as

min
β

1

n
∥y −Xβ∥22 + λ∥β∥1.

Note that
∥y −Xβ∥22 = (y −Xβ)⊤(y −Xβ) = β⊤X⊤Xβ − 2y⊤Xβ + y⊤y

Here, X⊤X is positive semidefinite because

u⊤X⊤Xu = ∥Xu∥22 ≥ 0

for any vector u. In addition, y⊤y is a constant term which can be ignored from the objective.
Moreover, we can replace the ∥β∥1 term by an auxiliary variable and a set of linear constraints. To
be specific, the problem is equivalent to

minimize
1

n
β⊤X⊤Xβ − 2

n
y⊤Xβ + λt

subject to t ≥
d∑

i=1

si,

si ≥ β ≥ −si for i = 1, . . . , d.

Hence, LASSO can be reformulated as a quadratic program.
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3 Semidefinite programming

3.1 Motivation: max-cut

Semidefinite programming provides useful tools for solving difficult combinatorial optimization
problems. For example, we consider the “max-cut problem” defined as follows. Given a graph
G = (V,E), find a partition the vertex set V so that the number of edges crossing the partition is
maximized. Here, a partition (V1, V2) of V consists of two sets V1, V2 satisfying V1 ∪ V2 = V and
V1 ∩ V2 = ∅, and the set of edges crossing the partition is basically {uv ∈ E : u ∈ V1, v ∈ V2}. For
example, in Figure 6.1, there is a graph of 5 vertices partitioned into red and black vertices, and
the edges highlighted are the ones crossing the partition.

Figure 6.1: Edges crossing a partition

The problem can be formulated by the following (discrete) optimization problem:

maximize
∑
ij∈E

1− xixj
2

subject to xi ∈ {−1, 1} for i ∈ V.

As long as xi ∈ R, xi ∈ {−1, 1} is equivalent to x2i = 1. Hence, the formulation is equivalent to

maximize
∑
ij∈E

1− xixj
2

subject to x2i = 1 for i ∈ V.

Let d = |V |. Then we consider a d × d matrix X whose entry at ith row and jth column, Xij , is
xixj . Then we have that X = xx⊤, which is the outer product of vector x and itself. In fact, X
is of the form X = xx⊤ if and only if X is positive semidefinite and the rank of X is precisey 1.
What this implies is that, the max-cut formulation can be rewritten as

maximize
∑
ij∈E

1−Xij

2

subject to Xii = 1 for i ∈ V,

X ⪰ 0,

rank(X) = 1.
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Here, the constrsint rank(X) = 1 is nonconvex. A common approach is to take out the nonconvex
constraint and consider

maximize
∑
ij∈E

1−Xij

2

subject to Xii = 1 for i ∈ V,

X ⪰ 0.

This is often called the semidefinite programming (SDP) relaxation of max-cut.

3.2 General form

More generally, a semidefinite program is an optimization problem of the following form. Let C
and A1, . . . , Am be d× d matrices, and we have

minimize tr(C⊤X)

subject to tr(A⊤
ℓ X) = bℓ for ℓ = 1, . . . ,m

X ⪰ 0

(SDP)

where

tr(C⊤X) =
d∑

i=1

d∑
j=1

CijXij and tr(A⊤
ℓ X) =

d∑
i=1

d∑
j=1

(Aℓ)ijXij .

Here, if we view matrix X as a (d × d)-dimensional vector, then the objective and the equality
constraints are “linear” in X. Hence, (SDP) is analogous to linear programming. Recall that we
defined the linear programming (LP) dual of a given linear program. Likewise, we may define the
notion of semidefinite programming (SDP) dual. The dual of (SDP) is

maximize

m∑
ℓ=1

bℓyℓ

subject to

m∑
ℓ=1

yℓAℓ ⪯ C

(dual-SDP)

where
∑m

ℓ=1 yℓAℓ ⪯ C means C −
∑m

ℓ=1 yℓAℓ is positive semidefinite. If an optimization is in either
form, we say that it is a semidefinite program.

We will study more about duality later in this course. We have dicussed LP duality, and in
particular, we covered how to derive the dual of a linear program and learned duality theorems.
The notion of duality extends to more general classes of convex programming problems. We will
learn how to derive the dual of a given optimization problem, and we will define the associated
weak and strong duality statements.

3.3 Example: quadratic programming

(QP) can be rewritten as

minimize t

subject to Ax ≥ b,

x⊤Qx+ 2p⊤x ≤ 2t.
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In fact, this can be expressed as an instance of (dual-SDP) by rewriting Ax ≥ b and x⊤Qx+2p⊤x ≤
2t using some positive semidefinite matrices.

Note that Ax − b is a vector and Ax ≥ b means that the entries of Ax − b are nonnegative.
Diag(Ax− b) is the diagonal matrix whose diagonal entries are the components of Ax− b. In fact,
Ax− b ≥ 0 holds if and only if

Diag(Ax− b) ⪰ 0

which means that Diag(Ax− b) is positive semidefinite.

Next we consider x⊤Qx+ 2p⊤x ≤ 2t where Q is positive semidefinite.

Lemma 6.1. For any positive semidefinite matrix Q, there exists a matrix P such that Q = P⊤P .

Proof. By the eigendecomposition theorem for symmetric marices, Q can be written as Q = UΛU⊤

where U is an orthonormal matrix and Λ is a diagonal matrix whose diagonal entries consist of the
eigenvalues of Q. Since Q is positive semidefinite, all its eigenvalues are nonnegative, and therefore,
all diagonal entries of Λ are nonnegative. Then Λ1/2 can be properly defined by taking the square
root of each diagonal entry of Λ. Then Λ = (Λ1/2)⊤Λ1/2 as Λ1/2 is symmetric as well. Then

Q = UΛU⊤ = U(Λ1/2)⊤Λ1/2U⊤ = (Λ1/2U⊤)⊤(Λ1/2U⊤).

Taking P = Λ1/2U⊤, we have Q = P⊤P .

By Lemma 6.1, x⊤Qx+ 2p⊤x ≤ 2t is equivalent to

x⊤P⊤Px+ 2p⊤x ≤ 2t

for some matrix P . We also need the following result.

Lemma 6.2. Let y ∈ Rd. Then y⊤y ≤ s is equivalent to(
s y⊤

y I

)
⪰ 0

where I is the d× d identity matrix.

Proof. (⇐) Note that

(1,−y⊤)

(
s y⊤

y I

)(
1
−y

)
= s− y⊤y ≥ 0.

(⇒) Let u ∈ R and v ∈ Rd. Then

(u, v⊤)

(
s y⊤

y I

)(
u
v

)
= u2s+ 2uy⊤v + v⊤v

≥ u2y⊤y + 2uy⊤v + v⊤v

= (uy + v)⊤(uy + v)

≥ 0.

Therefore, the matrix is positive semidefinite as required.
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By Lemma 6.2, x⊤P⊤Px+ 2p⊤x ≤ 2t is equivalent to(
2t− 2p⊤x (Px)⊤

Px I

)
⪰ 0.

Finally, we have shown that (QP) is equivalent to the following optimization problem.

minimize t

subject to Diag(Ax− b) ⪰ 0,(
2t− 2p⊤x (Px)⊤

Px I

)
⪰ 0.

4 Conic programming

Recall that a linear program (LP) is an optimization problem with a linear objective and a system
of linear inequality constraints, as follows.

minimize c⊤x

subject to Ax ≥ b.
(LP)

Here, if the rows of A are a⊤1 , . . . , a
⊤
n and the components of b are b1, . . . , bn, then the linear system

Ax ≥ b consists of linear inequality constraints a⊤1 x ≥ b1, . . . , a
⊤
n x ≥ bn. Note that Ax itself is a

column vector whose components are a⊤1 x, . . . , a
⊤
n x. Basically, the arithmetic “≥” compares two

column vectors Ax and b coordinatewise.

Ax ≥ b is equivalent to Ax− b ≥ 0, which means that each component of the column vector Ax− b
is nonnegative. We know that Rn

+ is the nonnegative orthant, that is, the set of vectors all whose
coordinates are nonnegative. Hence, Ax − b ≥ 0 is equivalent to Rn

+. Then the following is an
equivalent expression for the above linear program.

minimize c⊤x

subject to Ax− b ∈ Rn
+.

Let us take a closer look at the nonnegative orthant Rn
+. It satisfies the following properties.

1. Rn
+ is a convex cone.

2. Rn
+ is pointed, which means that if v ∈ Rn

+ and −v ∈ Rn
+, then it must be that v = 0.

In fact, Rn
+ is not just a pointed convex cone. There are other important properties of Rn

+.

3. Rn
+ is closed, which means that for any convergent sequence {vn}n∈N contained in Rn

+, its
limit limn→∞ vn also belongs to Rn

+.

4. Rn
+ has a nonempty interior. Equivalently, Rn

+ contains an interior point. A vector v is an
interior point of a set K if there exists an open ball around v which is fully contained in K.
Then the interior of a set K, denoted int(K), is defined as the set of all its interior points.
The interior of Rn

+ is Rn
++, the positive orthant.

In summary, the nonnegative orthant Rn
+ is a pointed and closed convex cone with a nonempty

interior. In fact, there are other closed convex cones that are pointed and have a nonempty interior.
For example,
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• The Lorentz cone.

{(x1, . . . , xn−1, xn)
⊤ ∈ Rn : ∥(x1, . . . , xn−1)

⊤∥2 ≤ xn}.

Other equivalent names include the second-order cone, the ice-cream cone, and the ℓ2-norm
cone. Its interior is given by

{(x1, . . . , xn−1, xn)
⊤ ∈ Rn : ∥(x1, . . . , xn−1)

⊤∥2 < xn}.

• The positive semidefinite cone.

{S ∈ Sd : x⊤Sx ≥ 0 for all x ∈ Rd}.

Its interior is the positive definite cone, the set of all positive definite matrices.

A conic program is an optimization problem defined with a pointed and closed convex cone K with
a nonempty interior, as follows.

minimize c⊤x

subject to Ax− b ∈ K.
(CP)

Again, when K = Rn
+, the problem reduces to a linear program. As we use the arithmetic “≥” to

indicate that a vector belongs to Rn
+, we use notation “≥K” to indicate that a vector belongs to

cone K. Basically, Ax− b ∈ K is equivalent to Ax− b ≥K 0 and Ax ≥K b.

Example 6.3. When K is the second-order cone, the conic program (CP) is referred to as a second-
order cone program. When K is the positive semidefinite cone, (CP) is a semidefinite program.

5 Conic duality

We know that the dual of the linear program (LP) is given by

maximize b⊤y

subject to A⊤y = c

y ≥ 0.

(dual-LP)

Let us see how to derive the dual! Note that for any y ≥ 0 (or y ∈ Rn
+) and system Ax ≥ b, we

have y⊤(Ax− b) ≥ 0 because y ≥ 0 and Ax− b ≥ 0. Then it follows that

y⊤Ax ≥ y⊤b.

If y further satisfies
A⊤y = c,

then we have
y⊤Ax = c⊤x ≥ y⊤b = b⊤y.

In summary, if we take x ∈ Rd satisfying Ax ≥ b and y ∈ Rn with y ≥ 0 and A⊤y = c, then
c⊤x is always lower bounded by b⊤y. Then we can try to find the best possible lower bound by
maximizing the value of b⊤y, which is precisely what (dual-LP) does!

Following the basic idea behind obtaining the dual linear program, we may obtain and define the
dual of the conic program (CP). The dual cone of K ⊆ Rn is defined as

K∗ =
{
y ∈ Rn : y⊤x ≥ 0 ∀x ∈ K

}
.

The dual cone of the nonnegative orthant Rd
+ is Rd

+ itself.
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Example 6.4. The dual cone of the positive semidefinite cone Sd+ is given byX ∈ Rd×d : tr(X⊤S) =
d∑

i=1

d∑
j=1

XijSij ≥ 0 ∀S ∈ Sd+

 .

In fact, the positive semidefinite cone Sd+ is self-dual, meaning that its dual cone is itself.

Theorem 6.5 (See Theorem 2.3.1 in [BTN01]). Let K be a pointed and closed convex cone with
nonempty interior. Then its dual cone K∗ is also a pointed and closed convex cone with nonempty
interior. Moreover, (K∗)∗ = K.

Let us see how to derive and define the dual of the conic program!

(1) Take x such that Ax− b ∈ K and y ∈ K∗. Then y⊤(Ax− b) ≥ 0, and therefore,

y⊤Ax ≥ y⊤b.

(2) If y ∈ K∗ further satisfies A⊤y = c, then

c⊤x = y⊤Ax ≥ y⊤b = b⊤y.

(3) Then

maximize b⊤y

subject to A⊤y = c

y ∈ K∗
(dual-CP)

provides a lower bound on the value of (CP). Here, (dual-CP) is the dual conic program
of (CP).

Taking the dual of a maximization problem is similar; the dual will give an upper bound on the
problem.

Example 6.6. We consider the following semidefinite program.

maximize

m∑
ℓ=1

bℓyℓ

subject to

m∑
ℓ=1

yℓAℓ ⪯ C

To obtain its dual, we take a positive semidefinite matrix X. As the positive semidefinite cone Sd+
is self-dual, it follows that

tr

(
X⊤

(
C −

m∑
ℓ=1

yℓAℓ

))
= tr(C⊤X)−

m∑
ℓ=1

yℓ · tr((Aℓ)
⊤X) ≥ 0.

If X satisfies
tr((Aℓ)

⊤X) = bℓ for ℓ = 1, . . . ,m,
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then

tr(C⊤X) ≥
m∑
ℓ=1

yℓ · tr((Aℓ)
⊤X) =

m∑
ℓ=1

bℓyℓ.

This means that

minimize tr(C⊤X)

subject to tr((Aℓ)
⊤X) = bℓ for ℓ = 1, . . . ,m

X ⪰ 0

provides an upper bound on the first semidefinite program.
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