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1 Outline

In this lecture, we consider

• Convex optimization applications,

• Classes of convex programming problems I (linear programming)

2 Convex optimization applications

2.1 Portfolio optimization

In the last lecture, we learned that the following formulation models a portfolio optimization prob-
lem.

maximize µ>x− γx>Σx

subject to 1>x = 1,

x ∈ C ′

where

• µ is the vector of expected returns of financial assets,

• Σ is the covariance matrix of the financial assets’ random returns,

• C ′ is a convex constraint set which could be C ′ = Rd+ (long positions only) or C ′ = {x ∈ Rd :
‖x‖1 ≤ B} (bounded leverage),

• γ > 0 is the risk aversion parameter.

Note again that the formulation above is a convex optimization problem. First, the feasible region
is the intersection of a hyperplane

{x ∈ Rd : 1>x = 1}

and a convex set C ′. Therefore, the feasible region is a convex set. Moreover, it is known that
any covariance matrix is positive semidefinite. This in turn implies that the objective function
µ>x− γx>Σx is a concave function. Moreover, observe that

max
{
µ>x− γx>Σx : 1>x = 1, x ∈ C ′

}
= −min

{
−µ>x+ γx>Σx : 1>x = 1, x ∈ C ′

}
.

As µ>x − γx>Σx is concave, it follows that the function −µ>x + γx>Σx is convex. Thus, the
minimization problem is indeed a convex optimization problem. From now on, we may skip this
process and simply say that concave maximization is equivalent to convex minimization.
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2.2 Uncertainty quantification

Recall that given a portfolio x and the covariance matrix Σ of financial assets, the quadratic term

x>Σx

models the risk of the portfolio x. However, in practice, it is difficult to predict the exact value of
Σ. Instead, we estimate it and deduce an empirical estimation of it. Let us denote it as Σ̄. Then

x>Σ̄x

is an estimation of the actual risk term x>Σx. Although x>Σ̄x may provide a proxy for the risk,
underestimation of risk could result in a critical situation. Then the question is, given the empirical
estimate of the risk term x>Σ̄x, what would be the worst-case risk value under estimation noise?

How do we consider possible estimation noise? One common way to use some statistics tool such
as ∥∥∥∥∥∥ Σ︸︷︷︸

true covariance

− Σ̄︸︷︷︸
empirical covariance

∥∥∥∥∥∥
nuc

≤ ε

which holds for some ε (with high probability) where ε depends on the number of data to obtaine
the estimate Σ̄. Here, ‖ · ‖nuc denotes what is called the nuclear norm over matrices. Then we may
draw a ball around the empirical covariance matrix with respect to the nuclear norm. Formally,

Figure 5.1: Nuclear-norm-ball around the empirical covariance matrix

we consider {
A ∈ Rd×d :

∥∥A− Σ̄
∥∥
nuc
≤ ε
}

=
{

Σ̄ + S ∈ Rd×d : ‖S‖nuc ≤ ε
}
.

Then it follows from the above statistical result that the true covariance matrix Σ belongs to the
ball (with high probability). Then now we consider

maximize x>(Σ̄ + S)x

subject to Σ̄ + S � 0,

‖S‖nuc ≤ ε
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Note that Σ = Σ̄ + S for some matrix S with ‖S‖nuc ≤ ε. Moreover, we know that Σ is positive
semidefinite. Therefore,

x>Σx ≤ max
{
x>(Σ̄ + S)x : Σ̄ + S � 0, ‖S‖nuc ≤ ε

}
.

Hence, the optimum value provides an upper bound on the true risk value of portfolio x.

2.3 Support vector machine

Given n data (x1, y1), . . . , (xn, yn) where yi ∈ {−1, 1} are labels, we want to find a separating
hyperplane

w>x = b

to classify data with +1 and data with −1. The goal is to find a separating hyperplane w>x = b
with the “gap” (1/‖w‖2) being maximized. Here, the gap means the Euclidean distance between
two consecutive hyperplanes

{x ∈ Rd : w>x = b}, {x ∈ Rd : w>x = b+ 1}.

Then the problem can be formulated as

minimize ‖w‖2
subject to yi(w

>xi − b) ≥ 0, i = 1, . . . , n.

If this problem is feasible, then x→ sign(w>xi − b) is a valid classifier for the data set.

What if the data set is not entirely separable? What if no hyperplane separates the data without an
error? In such cases, we force separation via a penalty term, instead of imposing hard constraints.
The number of misclassifications can be used as penalty. Namely,

n∑
i=1

1(yi 6= sign(w>xi − b)).

However, this is not convex. Instead, we apply the hinge loss1, which is an upper bound on the
number of misclassifications, given by

n∑
i=1

max{0, 1− yi(w>xi − b)}.

Then we solve

min
w,b

λ‖w‖22 +
1

n

n∑
i=1

max{0, 1− yi(w>xi − b)}

where λ determines the trade-off between the margin size and the penalty.

1Here, max{0, a} is called the hinge function.
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2.4 LASSO (least absolute shrinkage and selection operator)

Based on n data points (x1, y1), . . . , (xn, yn), we want to find a linear rule

y = β>x

that best represents the relationship between x and y. The goal is to find β minimizing the “mean
squared error”, given by

min
β

1

n

n∑
i=1

(yi − β>xi)2 = min
β

1

n
‖y −Xβ‖22

where the rows of X are x>1 , . . . , x
>
n .

However, there are issues such as highly collinear covariates and overfitting. Motivated by this,
LASSO is a regression method that achieves variable selection and regularization. The LASSO
problem is to solve

minimize
1

n
‖y −Xβ‖22

subject to ‖β‖1 ≤ t

where t is a parameter determining the degree of regularization. Basically, the problem induces
sparsity in β. The problem is often transformed into the Lagrangian form, given as follows.

min
β

1

n
‖y −Xβ‖22 + λ‖β‖1

where λ is set to control the degree of regularization.

2.5 Facility location

Given the locations of n households x1, . . . , xn ∈ Rd, we wish to build a hospital covering the
households. A desired location would minimize the longest distance to a household. The problem
can be formulated as

min
x

max
i=1,...,n

‖x− xi‖.

3 Convex optimization hierarchy

On top of the applications we studied, there are many interesting “classes” of convex optimization
problems. In this lecture, we consider them in this section, and specifically, we discuss

• Linear programming (LP),

• Quadratic programming (QP),

• Semidefinite programming (SDP),

• Conic programming,

• Second-order cone programming (SOCP).

In fact, these problems are closely related, and in fact, the problem classes form a hierarchy de-
scribed in Figure 5.2
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Figure 5.2: Hierarchy of classes of convex optimization problems

4 Linear programming

A linear program (LP) is an optimization problem of the following form.

minimize c>x

subject to Ax ≥ b
(P )

where c>x is the linear objective function and Ax ≥ b is the system of linear constraints a>1 x ≥
b1, . . . , a

>
n x ≥ bn, i.e., a>1 , . . . , a

>
n are the rows of A and b = (b1, . . . , bn)>. Note that the feasible

region P = {x ∈ Rd : Ax ≥ b} is a polyhedron, the intersection of half-spaces {x ∈ Rd : a>i x ≥ bi}
for i = 1, . . . , n. Hence, the linear program is the problem of finding a point in a polyhedron that
minimizes a linear function. Figure 5.3 describes a linear program with 2 variables.

Figure 5.3: Geometric picture of a linear program
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4.1 LP duality

The dual linear program of (P ) is given by

maximize b>y

subject to A>y = c,

y ≥ 0.

(D)

Weak LP duality states that OPT(P ) ≥ OPT(D), where OPT(P ) and OPT(D) denote the optimal
values of (P ) and (D), respectively. Strong LP duality states that if (P ) is feasible and bounded,
then (D) is feasible and bounded and OPT(P ) = OPT(D).

4.2 Example: facility location

Recall that the facility location problem can be modeled as follows.

minimize max
i=1,...,n

‖x− xi‖1

subject to x ∈ Rd

where x1, . . . , xn ∈ Rd are the locations of households and we use the `1 norm for the norm ‖ · ‖. In
fact, the problem is equivalent to a linear program. Why? We first introduce an auxiliary variable
to replace the objective. Then the problem is equivalent to

minimize t

subject to t ≥ max
i=1,...,n

‖x− xi‖1.

Basically, minimizing t forces minimizing the original objective maxi=1,...,n ‖x − xi‖1. Moreover,
t ≥ maxi=1,...,n ‖x− xi‖1 is equvialent to imposing t ≥ ‖x− xi‖1 for i = 1, . . . , n. The next step is
to replace t ≥ ‖x− xi‖1 by a set of linear inequalities. Note that

‖x− xi‖1 =

d∑
j=1

|xj − xij |

where x = (x1, . . . , xd)
> and xi = (xi1, . . . , x

i
d)
>. By introducing an auxiliary variable sij for each

absolute value term |xj − xij |, we replace t ≥
∑d

j=1 |xj − xij | by t ≥
∑d

j=1 sij and sij ≥ |xj − xij |.
Moreover, sij ≥ |xj − xij | is equivalent to sij ≥ xj − xij ≥ −sij . Therefore, we obtain

minimize t

subject to t ≥
d∑
j=1

sij for i = 1, . . . , n,

sij ≥ xj − xij ≥ −sij for i = 1, . . . , n, j = 1, . . . , d

which is a linear program.
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