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1 Outline

In this lecture, we study

• Convex functions and properties

• Epigraphs.

• First-order and second-order characterizations of convex functions.

• Operations preserving convexity

2 Convex functions

2.1 Definition

Definition 3.1. A function f : Rd → R is convex if the domain, denoted dom(f), is convex and
for all x, y ∈ dom(f), we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for 0 ≤ λ ≤ 1.

In words, function f evaluated at a point between x and y lies below the line segment joining f(x)
and f(y).

Figure 3.1: Illustration of a convex function in R2

Definition 3.2. We say that f : Rd → R is concave if −f is convex.

Definition 3.3. A function f : Rd → R is

• strictly convex if dom(f) is convex and for any distinct x, y ∈ dom(f), we have

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y) for 0 < λ < 1.

• strongly convex if f(x)− α‖x‖2 is convex for some α > 0 and norm ‖ · ‖.

Note that strong convexity implies strict convexity, and strict convexity implies convexity.
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2.2 Examples

Univariate functions (on R)

• Exponential function: eax for any a ∈ R.

• Power function: xa for a ≥ 1 over R+ and xa for a < 0 over R++.

xa for 0 ≤ a < 1 over R+ is concave.

• Logarithm: log x is concave on R++.

• Negative entropy: x log x on R++.

Multivariate functions (on Rd)

• Linear function: a>x+ b where a ∈ Rd and b ∈ R are both convex and concave.

• Quadratic function: 1
2x
>Ax+ b>x+ c where A � 0, b ∈ Rd, and c ∈ R.

• Least squares loss: ‖b−Ax‖22 for any A.

• Norm: Any norm ‖ · ‖ is concex, because a norm is subadditive and homogeneous.

• Maximum eigenvalue of a symmetric matrix.

• Indicator function: When C is convex, its indicator function, given by,

IC(x) =

{
0, x ∈ C
∞, x /∈ C

is convex.

• Support function: Given a convex set C, its support function is defined as

I∗C(x) = sup
y∈C

{
y>x

}
.

• Conjugate function: Given an arbitrary function f : Rd → R, the conjugate function f∗ is
defined as

f∗(x) = sup
y∈Rd

{
y>x− f(y)

}
.

2.3 Properties of convex functions

Definition 3.4. The epigraph of a function f : Rd → R is defined as

epi(f) = {(x, t) ∈ dom(f)× R : f(x) ≤ t}.

The following is another definition of convex functions with respect to the epigraph.

Exercise 3.5. Prove that f is a convex function if and only if the epigraph is a convex set.

Example 3.6. Recall that the norm cone {(x, t) ∈ Rd×R : ‖x‖ ≤ t} is a convex cone. This implies
that any norm f(x) = ‖x‖ is a convex function.

Remark 3.7. A level set of a function f : Rd → R is defined as

{x ∈ dom(f) : f(x) ≤ α}
for any α ∈ R. If f is convex, then all level sets are covex. However, the converse does not hold as
Figure 3.2 demonstrates.
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Figure 3.2: Convex level sets from a nonconvex function

3 First-order and second-order characterizations of convex func-
tions

The following results provides a first-order characterization of convex functions.

Theorem 3.8. Let f : Rd → R be a differentiable function. Then f is convex if and only if dom(f)
is convex and

f(y) ≥ f(x) +∇f(x)>(y − x)

for all x, y ∈ dom(f).

Figure 3.3: Illustration of the first-order characterization

Proof. (⇒) We first consider the d = 1 case. If f is convex, then for any x, y ∈ dom(f) and
λ ∈ (0, 1],

f(x+ λ(y − x)) = f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

Moving the (1− λ)f(x) term to the other side and dividing each side by λ, we obtain

f(y) ≥ f(x) +
f(x+ λ(y − x))− f(x)

λ
.

Then

f(y) ≥ f(x) + lim
λ→0+

f(x+ λ(y − x))− f(x)

λ
= f(x) + (y − x)f ′(x)

as f is differentiable and thus the limit exists.

Now we consider the general case. We define a function g over λ ∈ [0, 1] as follows.

g(λ) := f(x+ λ(y − x)).

Here, we can argue that if f is convex, then g is convex. More precisely, we have for α ∈ [0, 1] and
λ1, λ2 ∈ [0, 1],

g(αλ1 + (1− α)λ2) = f(x+ (αλ1 + (1− α)λ2)(y − x))

= f(α(x+ λ1(y − x)) + (1− α)(x+ λ2(y − x)))

≤ αf(x+ λ1(y − x)) + (1− α)f(x+ λ2(y − x)).

3



Moreover, g is differentiable as

g′(λ) = (y − x)>∇f(x+ λ(y − x)).

By the d = 1 case, g(1) ≥ g(0) + g′(0), which implies that f(y) ≥ f(x) +∇f(x)>(y − x).

(⇐) Let x, y ∈ dom(f) and λ ∈ [0, 1]. Take z = λx+ (1− λ)y. Then

f(x) ≥ f(z) +∇f(z)>(x− z), f(y) ≥ f(z) +∇f(z)>(y − x).

Multiplying the first and second by λ and (1−λ), respectively, and adding the resulting inequalities,
it follows that

λf(x) + (1− λ)f(y) ≥ f(z) +∇f(z)>(λx+ (1− λ)y − z) = f(λx+ (1− λ)y),

so f is convex.

What follows is another first-order characterization.

Theorem 3.9. Let f : Rd → R be a differentiable function. Then f is convex if and only if dom(f)
is convex and

〈∇f(x)−∇f(y), x− y〉 ≥ 0

for all x, y ∈ dom(f).

Proof. (⇒) By Theorem 3.8, we have

f(y) ≥ f(x) +∇f(x)>(y − x), f(x) ≥ f(y) +∇f(y)>(x− y).

Add these two to obtain (∇f(x)−∇f(y))>(x− y) ≥ 0.

(⇐) By the fundamental theorem of calculus, we obtain∫ 1

0
∇f(x+ λ(y − x))>(y − x)dλ =

∫ 1

0

(
d

dλ
f(x+ λ(y − x))

)
dλ

= f(x+ λ(y − x))
∣∣∣1
λ=0

= f(y)− f(x).

Moreover, for any λ > 0, we have

∇f(x+ λ(y − x))>(y − x)−∇f(x)>(y − x) =
1

λ
〈∇f(x+ λ(y − x))−∇f(x), λ(y − x)〉 ≥ 0,

implying in turn that
∇f(x+ λ(y − x))>(y − x) ≥ ∇f(x)>(y − x)

for any λ > 0. Note that this inequality trivially holds when λ = 0. Therefore,

f(y)− f(x) =

∫ 1

0
∇f(x+ λ(y − x))>(y − x)dλ ≥ ∇f(x)>(y − x).

Then f is convex by Theorem 3.8.

Next, we consider the second-order characterization.
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Theorem 3.10. Let f : Rd → R be a twice differentiable function1. Then f is convex if and only
if dom(f) is convex and

∇2f(x) � 0.

for all x ∈ dom(f).

Proof. (⇒) We first consider the d = 1 case. By Theorem 3.8, we have f(x) ≥ f(y) + f ′(y)(x− y)
and f(y) ≥ f(x) + f ′(x)(y − x). Adding these up and dividing each side by (y − x)2, we obtain

f ′(y)− f ′(x)

y − x
≥ 0.

Taking the limit as y → x, we obtain f ′′(x) ≥ 0.

Next, let us consider the general case. Let x ∈ dom(f) and v ∈ Rd. As dom(f) is open, we have
a sufficiently small ε > 0 such that x + λv ∈ dom(f) for any λ ∈ (−ε, ε). Let us define g over
λ ∈ (−ε, ε) as follows.

g(λ) = f(x+ λv).

Since f is convex, g is also convex. Note that

g′(λ) = v>∇f(x+ λv)

and that
g′′(λ) = v>∇2f(x+ λv)v.

By the d = 1 case,
g′′(0) = v>∇2f(x)v ≥ 0.

Therefore, we have proved that ∇2f(x) is positive semidefinite.

(⇐) By the fundamental theorem of calculus, we obtain∫ 1

0
(y − x)>∇2f(x+ λ(y − x))dλ =

∫ 1

0

(
d

dλ
∇f(x+ λ(y − x))

)
dλ

= ∇f(x+ λ(y − x))
∣∣∣1
λ=0

= ∇f(y)−∇f(x).

Then

〈∇f(y)−∇f(x), y − x〉 =

∫ 1

0
(y − x)>∇2f(x+ λ(y − x))(y − x)dλ ≥ 0

where the inequality follows because ∇2f is positive semidefinite. Then f is convex by Theorem 3.9.

4 Operations preserving convexity

For many problems, it is important to recognize underlying convex structures. We can determine
whether certain sets and functions are convex by understanding basic rules. Moreover, based on
these rules, we can build complex convex sets and functions from simpler ones.

1∇2f exists at any point in dom(f), and dom(f) is open.
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4.1 Set operations

We first consider set operations that preserve convexity.

• Intersection: The intersection of any (possibly infinite) collection of covex sets is convex.

• Scaling: Given a convex set C and α ∈ R,

αC = {αx : x ∈ C}.

• Minkowski sum: Given convex sets Ci ⊆ Rd for i = 1, . . . , k, the Minkowski sum of them,
defined by

C1 + · · ·+ Ck = {x1 + · · ·+ xk : xi ∈ Ci for i = 1, . . . , k}

is convex.

• Cartesian Product: Given convex sets Ci ⊆ Rdi for i = 1, . . . , k, the Cartesian product of
them, defined by

C1 × · · · × Ck = {(x1, . . . , xk) ∈ Rd1 × · · · × Rdk : xi ∈ Ci for i = 1, . . . , k}

is convex.

• Affine image: Given a convex set C and matrices A ∈ Rp×d, b ∈ Rp, we define an affine
mapping f(x) = Ax+ b : Rd → Rp. Then

f(C) = {Ax+ b : x ∈ C}.

• Inverse affine image: Given a convex set C and matrices A ∈ Rp×d, b ∈ Rp, we define an
affine mapping f(x) = Ax+ b : Rd → Rp. Then

f−1(C) = {x : Ax+ b ∈ C}.

4.2 Function operations

We next consider function operations preserving convexity.

• Nonnegative weighted sum: Let f1, . . . , fk : Rd → R be convex functions. Then for any
α1, . . . , αk ≥ 0,

α1f1 + · · ·+ αkfk

is convex.

• Maximum of arbitrary collection of convex functions: Let {fγ}γ∈Γ be a collection of convex
functions. Then maxγ∈Γ fγ is also convex. Here, Γ may be infinite.

• Minimizing out variables: Let g(x, y) be convex function in (x, y). Define f by f(x) =
infy∈C g(x, y) for some convex set C. Then f is convex.

• Perspective function: Let g(x) be a convex function. Then f(x, t) = tg(x/t) is a convex
function in (x, t) ∈ Rd × R++. Here, f is called the perspective of g.

• Affine composition: Let g : Rp → R be a convex function, and take matrices A ∈ Rp×d,
b ∈ Rp. Then f : Rd → R defined by f(x) = g(Ax+ b) is convex.
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• Compositions: Let h : R → R be a univariate non-decreasing convex function, and let g :
Rd → R be convex. Then f = h ◦ g is convex.

Example 3.11. Let C be an arbitrary set of locations. Note that

f1(x) = max
y∈C
||x− y||

measures the longest distance from x to a location in C, and

f2(x) = min
y∈C
‖x− y‖

measures the shortest distance from x to a location in C. Let us show that both f1 and f2 are
convex. Observe first that

g(x, y) = ‖x− y‖

is convex in x and y. Then f1 is convex as it is the pointwise maximum of some convex functions.
Furthermore, if C is convex, then f2 is convex because it is a partial minimization of a convex
function. In summary, f1 is convex regardless of whether C is convex or not, while f2 is convex if
the set C is convex.
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