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1 Outline

In this lecture, we study

• Matrix calculus review

• Convex sets,

• Convex functions.

2 Lipschitz continuity, gradient, and Hessian

We say that a function f : Rd → R is Lipschitz continuous with respect to norm ∥ · ∥ if there exists
some nonnegative constant L ≥ 0 such that

|f(x)− f(y)| ≤ L∥x− y∥ for all x, y ∈ Rd.

Here, we say that f is L-Lipschitz with respect to ∥ · ∥.
Let f : Rd → R be a function. Let ei denote the ith unit vector. For example, e1 = (1, 0, . . . , 0)⊤

and ed = (0, . . . , 0, 1)⊤. Then the ith partial derivative of f is defined as

∂f

∂xi
(x) = lim

t→0

f(x+ tei)− f(x)

t
.

Thus, the ith partial derivative is the directional derivative of f along the ith unit direction ei. If
all the partial derivatives of f exist at x ∈ Rd, then we may define the gradient of f at x, given by

∇f(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xd
(x)

)⊤
.

If a function is Lipschitz continuous, then it is continuous and differentiable almost everywhere.
However, there is a function that is Lipschitz continuous but not differentiable. For example,
f(x) = |x| for x ∈ R. In addition, f(x) = ∥x∥1 for x ∈ Rd.

Next, we consider
∂2f

∂xi∂xj
(x) for i, j ∈ [d]

are the second partial derivatives of f . If all the second partial derivatives exist, then we may define
the Hessian of f as follows

∇2f(x) =


∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x) · · · ∂2f

∂x1∂xd
(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x2

2
(x) · · · ∂2f

∂x2∂xd
(x)

...
...

. . .
...

∂2f
∂xd∂x1

(x) ∂2f
∂xd∂x2

(x) · · · ∂2f
∂x2

d
(x)

 .
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Moreover, if the second partial derivatives are continuous, then Schwarz’s theorem implies that the
Hessian is symmetric, i.e.,

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x) for every i, j ∈ [d].

3 A little bit of matrix calculus

Let A be an n× d matrix and b ∈ Rn. Let f(x) = g(Ax− b). Then by the chain rule,

∇f(x) = A⊤∇g(Ax− b), ∇2f(x) = A⊤∇2g(Ax− b)A.

Example 2.1. Consider f(x) = Ax− b. Then ∇f(x) = A⊤.

Consider a quadratic function

f(x) = x⊤Qx+ p⊤x =

d∑
i=1

d∑
j=1

Qijxixj +

d∑
i=1

pixi.

Then the gradient of f is given by

∇f(x) = (Q+Q⊤)x+ p, ∇2f(x) = Q+Q⊤.

Example 2.2. Consider f(x) = ∥Ax− b∥22. Then

∇f(x) = 2A⊤(Ax− b), ∇2f(x) = 2A⊤A.

4 Convex sets

4.1 Definition

Definition 2.3. A set X ⊆ Rd is convex if for any u, v ∈ X and any λ ∈ [0, 1],

λu+ (1− λ)v ∈ X.

In words, the line segment joining any two points is entirely contained the set. In Figure 2.1, we
have a convex set and a non-convex set.

Figure 2.1: A convex set and a nonconvex set

Definition 2.4. Given v1, . . . , vk ∈ Rd, any linear combination λ1v
1 + · · · + λkv

k is a convex
combination of v1, . . . , vk if

k∑
i=1

λi = 1 and λi ≥ 0 for i = 1, . . . , k.
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The convex combination of two distinct points u, v is the line segment {λu+(1−λ)v : 0 ≤ λ ≤ 1}
connecting them.

Definition 2.5. The convex hull of a set X, denoted conv(X), is the set of all convex combinations
of points in X. By definition,

conv(X) =


n∑

i=1

λiv
i :

n ∈ N, v1, . . . , vn ∈ X,
n∑

i=1

λi = 1, λ1, . . . , λn ≥ 0

 .

Here, conv(X) is always convex regardless of X. Figure 2.2 shows some examples of taking the
convex hull of a set.

Figure 2.2: A convex set and a nonconvex set

4.2 Cones and affine subspaces

Definition 2.6. A set C ⊆ Rd is a cone if for any v ∈ C and α > 0, we have αv ∈ C. Furthermore,
if C is convex, then it is called a convex cone.

Note that not all cones are convex.

Definition 2.7. Given v1, . . . , vk ∈ Rd, any point of the form α1v
1 + · · · + αvkv

k is a conic
combination of v1, . . . , vk if α1, . . . , αk ≥ 0.

In other words, any nonnegative linear combination is a conic combination.

Definition 2.8. The conic hull of a set X, denoted cone(X), is the set of all conic combinations
of points in X. By definition,

conv(X) =

{
n∑

i=1

λiv
i :

n ∈ N, v1, . . . , vn ∈ X,

λ1, . . . , λn ≥ 0

}
.

As conv(X), cone(X) is always convex, Figure 2.3 shows an example taking the conic hull of a set
in R2.

Lastly, we define the notion of affine subspaces.

Definition 2.9. Given v1, . . . , vk ∈ Rd, any point of the form θ1v
1 + · · · + θvkv

k is a affine
combination of v1, . . . , vk if θ1 + · · ·+ θk = 1.
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Figure 2.3: Taking the conic hull of a triangle in R2

In contrast to covex combinations, affine combinations allow negative multipliers.

Definition 2.10. The affine hull of a set X is the set of all affine combinations of points in X.

The affine hull of X is also referred to as the affine subspace spanned by X. In the previous lecture,
we defined the linear subspace spanned by a finite set of vectors, but we can extend the definition
to an arbitrary set. The linear hull of a set X is equivalent to the linear subspace spanned by X.

In Figure 2.4, we have a set S of two points in R2. The red line segment is conv(S), the green line
through the two points is the affine subspace spanned by S, the blue cone depicts cone(S), and
lastly, the orange region (in fact, R2) is the linear subspace spanned by S.

Figure 2.4: Comparing the linear subspace, the affine subspace, the convex hull, and the conic hull

Theorem 2.11. An affine subspace is a translation of a linear subspace. For an affine subspace
V ⊆ Rd, there exist matrices A and b such that V = {x ∈ Rd : Ax = b}.

4.3 Examples

We saw that the convex hull and conic hull of a set are convex and that the linear subspace and
affine subspace spanned by a set are convex. There are many more examples.

1. Empty set, singletons (sets of the form {v}),
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2. Norm ball: {x ∈ Rd : ∥x− c∥ ≤ r} where c is the center.

3. Ellipsoid: {x ∈ Rd : (x− c)⊤P (x− c) ≤ 1} where P is positive definitie and c is the center.

4. Hyperplane: {x ∈ Rd : a⊤x = b} where a ∈ Rd and b ∈ R.

5. Half-space: {x ∈ Rd : a⊤x ≤ b} where a ∈ Rd and b ∈ R.

6. Polyhedron: A polyhedron is a finite intersection of half spaces, {x ∈ Rd : Ax ≤ b} where
A ∈ Rm×d and b ∈ Rm. Here, Ax ≤ b is a short-hand notation for system a⊤k x ≤ bk for
k ∈ [m].

7. Polytope: A polytope is a polyhedron that is bounded. Equivalently, a polytope is the convex
hull of some finite set of vectors.

8. Simplex: A set of the form {x ∈ Rd : 1⊤x = 1, x ≥ 0}, which is equal to the convex hull of
e1, . . . , ed, the d-dimensional unit vectors.

9. Nonnegative orthant: Rd
+ = {x ∈ Rd : x ≥ 0}.

10. Positive orthant: Rd
++ = {x ∈ Rd : x > 0}.

There are examples of convex cones, which are convex as well.

1. Norm cone: {(x, t) ∈ Rd ×R : ∥x∥ ≤ t}. When ∥ · ∥ is the Euclidean norm, the cone is called
the second-order cone.

2. Positive semidefinite cone: The set of all positive semidefinite matrices of a fixed dimension.

5 Convex functions

5.1 Definition

Definition 2.12. A function f : Rd → R is convex if the domain, denoted dom(f), is convex and
for all x, y ∈ dom(f), we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for 0 ≤ λ ≤ 1.

In words, function f evaluated at a point between x and y lies below the line segment joining f(x)
and f(y).

Figure 2.5: Illustration of a convex function in R2

5



Definition 2.13. We say that f : Rd → R is concave if −f is convex.

Definition 2.14. A function f : Rd → R is

• strictly convex if dom(f) is convex and for any distinct x, y ∈ dom(f), we have

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y) for 0 < λ < 1.

• strongly convex if f(x)− α∥x∥2 is convex for some α > 0 and norm ∥ · ∥.

Note that strong convexity implies strict convexity, and strict convexity implies convexity.
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