
IE 539: Convex Optimization KAIST, Fall 2024
Lecture #24: Primal-dual interior method December 9, 2024
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

• the infeasible start Newton method,

• the primal-dual interior point method.

2 Infeasible start Newton method

Recall that Newton’s method can be extended to solve the following equality constrained problem.

minimize f(x)

subject to Ax = b.
(24.1)

The update rule is that given a current iterate xt, we obtain

xt+1 = xt + d

where d is chosen to be an optimal solution to the following.

minimize f(xt) +∇f(xt)⊤d+
1

2
d⊤∇2f(xt)d

subject to A(xt + d) = b.
(24.2)

Remember that based on the KKT conditions, we derived a necessary and sufficient condition for
d as follows.

∇f(xt) +∇2f(xt)d+A⊤µ = 0,

A(xt + d) = b.

Subject to Axt = b, this can be expressed as the following matrix system.[
∇2f(xt) A⊤

A 0

] [
d
µ

]
=

[
−∇f(xt)

0

]
.

Here is our next question. What if the current iterate xt is not feasible, meaning Axt ̸= b? In this
case, the corresponding matrix system for charcterizing d is[

∇2f(xt) A⊤

A 0

] [
d
µ

]
= −

[
∇f(xt)
Axt − b

]
. (24.3)

Here, if the KKT matrix is invertible, we can deduce the desired direction d and obtain a new
iterate xt+1 = xt + d. This suggests that we may deal with infeasible iterates that are generated
in intermediate steps. Then this raises one further question. Can we allow a sequence of infeasible
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iterates? When xt is infeasible and d is the associated direction with xt + d is feasible, instead of
taking xt + d, let us take

xt+1 = xt + ηd

for some step size η. Here, if Ad ̸= 0 and η ̸= 1, then xt + ηd is not feasible. Nevertheless, as
mentioned before, we can proceed the algorithm regardless of the feasibility of xt+1.

For the remainder of this section, we use notation ∆x to replace d to emphasize that the direction
is the change we make. Moreover, note that we obtain a new dual variable µ every time we
solve (24.3). Here, one may record the diffrence between the current dual variable and the new
dual variable. Let us denote by ∆µ the incremental change in the dual variable. Then the KKT
conditions can be rewritten as

∇f(x) +∇2f(x)∆x+A⊤(µ+∆µ) = 0,

A(x+∆x) = b.

Here, ∆x and ∆µ can be found by solving[
∇2f(x) A⊤

A 0

] [
∆x
∆µ

]
= −

[
∇f(x) +A⊤µ

Ax− b

]
. (24.4)

This point of view suggests a primal-dual algorithm, Given a point x, our next point is given by

x+ η∆x.

Following the update rule for the x variables, we may update the dual variable as

µ+ η∆µ

where µ is the current dual variable. This is called a primal-dual method because we update both
the original variable x and the dual variable µ at each iteration.

We stop the algorithm when ∆x and ∆µ become sufficiently small. This is equivalent to have

r(x, µ) =

[
∇f(x) +A⊤µ

Ax− b

]
= −

[
∇2f(x) A⊤

A 0

] [
∆x
∆µ

]
sufficiently small.

Algorithm 1 Infeasible start Newton method

Initialize t = 1, x1, µ1, an accuracy level ϵ, and parameters 0 < α < 1/2 and 0 < β < 1.
while Axt ̸= b or ∥r(xt, µt)∥2 > ϵ do

Obtain ∆xt and ∆µt.
Apply backtracking line search on ∥r∥2 with parameters α and β as follows.
Set k = 1.
while ∥r(xt + k∆xt, µt + k∆µt)∥2 > (1− kα)∥r(xt, µt)∥2 do

k ← βk.
end while
Update xt+1 = xt + k∆xt and µt+1 = µt + k∆µt.
t← t+ 1.

end while
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Here, r(x+∆x, µ+∆µ) can be expressed as

r(x+∆x, µ+∆µ) =

[
∇f(x+∆x) +A⊤(µ+∆µ)

A(x+∆x)− b

]
≈ r(x, µ) +

[
∇2f(x) A⊤

A 0

] [
∆x
∆µ

]
.

Hence, computing ∆x and ∆y can be interpreted as trying to make r(x+∆x, µ+∆µ) ≈ 0.

3 Primal-dual interior point method

In the last lecture, we learned the barrier method for solving the following constrained convex
minimization problem.

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m,

Ax = b.

(24.5)

For the barrier method, we used the log-barrier function given by

ψ(x) = −
m∑
i=1

log(−gi(x)).

Then by solving

minimize f(x) +
1

t
ψ(x)

subject to Ax = b
(24.6)

for t > 0, we compute an optimal solution x⋆(t) for each t and construct the central path {x⋆(t) :
t > 0}. Moreover, we deduced the associated dual variables λ⋆i (t) and µ

⋆(t) defined as

λ⋆i (t) = −
1

t · gi(x⋆(t))
, i = 1, . . . ,m, µ⋆(t) =

µ⋆

t
.

We also saw that (x, λ, µ) = (x⋆(t), λ⋆(t), µ⋆(t)) satisfies the perturbed KKT conditions given by

∇f(x) +
m∑
i=1

λi∇gi(x) +A⊤µ = 0,

λigi(x) = −
1

t
, i = 1, . . . ,m,

gi(x) ≤ 0, i = 1, . . . ,m

Ax = b,

λi ≥ 0, i = 1, . . . ,m.

(24.7)

In this section, we will develop primal-dual methods for solving (24.5) based on the perturbed KKT
conditions given in (24.7).

3.1 Primal-dual interpretation for the barrier method

For the barrier method, we have the condition that

λi = −
1

tgi(x)
, i = 1, . . . ,m.
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Plugging in this to (24.7), we deduce

∇f(x)− 1

t

m∑
i=1

1

gi(x)
∇gi(x) +A⊤µ = 0,

Ax− b = 0.

The barrier method solves (24.6) with the objective function.

h(x) = f(x)− 1

t

∑
i=1

log(−gi(x)).

Note that the perturbed KKT conditions are nothing but

∇h(x) +A⊤µ = 0,

Ax− b = 0

because

∇h(x) = ∇f(x)− 1

t

m∑
i=1

1

gi(x)
∇gi(x).

In fact, this system comes up for the infeasible start Newton method. When we apply the infeasible
start Newton method to solve (24.6), we proceed with the system[

∇2h(x) A⊤

A 0

] [
∆x
∆µ

]
= −

[
∇h(x) +A⊤µ

Ax− b

]
.

Here, ∇2h(x) is given by

∇2h(x) = ∇2f(x) +
1

t

m∑
i=1

1

gi(x)2
∇gi(x)∇gi(x)⊤ −

1

t

m∑
i=1

1

gi(x)
∇2gi(x).

Basically, the perturbed KKT conditions characterize (x, µ) satisfying

r(x, µ) =

[
∇h(x) +A⊤µ

Ax− b

]
= 0.

The infeasible start Newton method tries to find a pair (x, µ) with r(x, µ). As we mentioned, before
the infeasible start Newton method is a primal-dual algorithm. Therefore, the barrier method with
the infeasible start Newton method can be interpreted as a primal-dual method.

3.2 Primal-dual method by the perturbed KKT conditions

In the previous subsection, we observed that the perturbed KKT conditions with λ removed based
on the barrier method leads to a primal-dual algorithm. In fact, we may design another primal-dual
algorithm based on the perturbed KKT conditions (24.7) without removing the λ variables.

Let us use notations g(x) and Dg(x) to denote

g(x) =

 g1(x)...
gm(x)

 , Dg(x) =

∇g1(x)
⊤

...
∇gm(x)⊤

 .
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Then the equality conditions in (24.7) can be written as

∇f(x) +Dg(x)⊤λ+A⊤µ = 0,

−Diag(λ)g(x)− 1

t
1 = 0,

Ax− b = 0

(24.8)

where 1 denotes the vector of all ones and Diag(v) denotes the diagonal matrix whose diagonal
entries are given by the components of vector v. Then we define r(x, λ, µ) as

r(x, λ, µ) =

 rdual(x, λ, µ)
rcentral(x, λ, µ)
rprimal(x, λ, µ)

 =

∇f(x) +Dg(x)⊤λ+A⊤µ
−Diag(λ)g(x)− 1

t1
Ax− b

 .
A primal-dual method would seek to update (x, λ, µ) as follows.

x→ x+ η∆x, λ→ λ+ η∆λ, µ→ µ+ η∆µ.

How do we find the increments ∆x, ∆λ, and ∆µ? Note that

r(x+∆x, λ+∆λ, µ+∆µ)

=

∇f(x+∆x) +Dg(x+∆x)⊤(λ+∆λ) +A⊤(µ+∆µ)
−Diag(λ+∆λ)g(x+∆x)− 1

t1
A(x+∆x)− b


≈ r(x, λ, µ) +

∇2f(x) +
∑m

i=1 λi∇2gi(x) Dg(x)⊤ A⊤

−Diag(λ)Dg(x) −Diag(g(x)) 0
A 0 0

∆x∆λ
∆µ


Basically, we find (∆x,∆λ,∆µ) so that r(x +∆x, λ +∆λ, µ +∆µ) ≈ 0. We may achieve this by
solving∇2f(x) +

∑m
i=1 λi∇2gi(x) Dg(x)⊤ A⊤

−Diag(λ)Dg(x) −Diag(g(x)) 0
A 0 0

∆x∆λ
∆µ

 = −

∇f(x) +Dg(x)⊤λ+A⊤µ
−Diag(λ)g(x)− 1

t1
Ax− b

 .
Based on this, we may deduce a primal-dual algorithm. Given (xt, λt, µt), we obtain

(xt+1, λt+1, µt+1) = (xt + η∆xt, λt + η∆ηt, µt + η∆ηt)

for some step size η > 0.

3.3 Primal-dual interior point method

How do we guarantee convergence of the primal-dual algorithm? Suppose that

∇f(x) +Dg(x)⊤λ+A⊤µ = 0,

Ax− b = 0
(24.9)

and that gi(x) ≤ 0 and λi ≥ 0 for i = 1, . . . ,m. This means that x is feasible to (24.5) and that

L(x, λ, µ) = min
x
L(x, λ, µ) = q(λ, µ).
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Here, we have

f(x)− q(λ, µ) = −
m∑
i=1

λigi(x)− µ⊤(Ax− b) = −
m∑
i=1

λigi(x).

As the Lagrangian duality implies that

f(x)−min {f(x) : gi(x) ≤ 0, i = 1, . . . ,m, Ax = b} ≤ f(x)− q(λ, µ),

we know that

−
m∑
i=1

λigi(x)

provides an optimality gap. However, the infeasible start Newton method does not guarantee
feasibility for intermediate iterations. Therefore, −

∑m
i=1 λigi(x) is not necessarily an upper bound

on the optimality gap if (24.9) is not satisfied. Nevertheless, the term −
∑m

i=1 λigi(x) provides a
proxy for the optimality gap. Based on this observation, we may deduce the following algorithm.

Algorithm 2 Primal-dual interior point method

Initialize x1 with gi(x1) < 0 for i = 1, . . . ,m, λ1 > 0, α > 1, and an accuracy level ϵ.
Set δ1 = −

∑m
i=1 λ

1
i (gi(x1)).

while δk > ϵ or (∥rprimal(xk, λ
k, µk)∥22 + ∥rdual(xk, λk, µk)∥22)1/2 > ϵ do

Set t = αm/δk
Obtain ∆xk, ∆λ

k, and ∆µk.
Apply backtracking line search to determin step size ηk.
Update (xk+1, λ

k+1, µk+1) = (xk + η∆xk, λ
k + η∆λk, µk + η∆µk).

Set δk+1 = −
∑m

i=1 λ
k+1
i gi(xk+1).

k ← k + 1.
end while

Here, the backtracking line search needs to find η such that gi(xk+1) < 0 and λki > 0 for i = 1, . . . ,m.
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