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1 Outline

In this lecture, we study

• Newton’s method for equality constrained minimization

• Barrier method.

2 Newton’s method for equality constrained minimization

Let us consider the following convex optimization problem with equality constraints.

minimize f(x)

subject to Ax = b.
(23.1)

Here, Ax = b consists of affine constraints, and the objective function f is convex and twice
continuously differentiable. Recall that for the unconstrained setting, Newton’s method proceeds
with the update rule

xt+1 ∈ argmin
x

{
f(xt) +∇f(xt)

>(x− xt) +
1

2
(x− xt)>∇2f(xt)(x− xt)

}
from which we deduce

xt+1 = xt −∇2f(xt)
−1∇f(xt).

Here, the descent direction d = −∇2f(xt)
−1∇f(xt) can be directly computed by

d ∈ argmin
x

{
f(xt) +∇f(xt)

>d+
1

2
d>∇2f(xt)d

}
because xt+1 = xt +d. Based on this, we may extend Newton’s method to the equality constrained
problem. Basically, the direction d for the update rule can be computed as an optimal solution to
the following optimization problem

minimize f(xt) +∇f(xt)
>d+

1

2
d>∇2f(xt)d

subject to A(xt + d) = b.
(23.2)

Here, if this optimization problem has a solution, then xt + d is indeed a feasible solution to (23.1).
In fact, we can characterize such a direction d by the KKT conditions. Note that the associated
Lagrangian is given by

L(d, µ) = f(xt) +∇f(xt)
>d+

1

2
d>∇2f(xt)d+ µ>(A(xt + d)− b).

Then, since f is convex and the constraints are all affine, it follows from the KKT conditions that
d is an optimal solution to (23.2) if and only if there exists µ such that

∇f(xt) +∇2f(xt)d+A>µ = 0,

A(xt + d) = b.
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Subject to Axt = b, this can be expressed as the following matrix system.[
∇2f(xt) A>

A 0

] [
d
µ

]
=

[
−∇f(xt)

0

]
.

Here, the matrix [
∇2f(xt) A>

A 0

]
is referred to as the KKT matrix.

3 Barrier method

In this section we consider the following constrained convex minimization problem.

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m,

Ax = b.

(23.3)

Comparing this setting and (23.1), we have additional inequality constraints gi(x) ≤ 0 for i ∈
[m]. Suppose that (23.3) satisfies Slater’s condition. As an example of (23.3), we consider linear
programs of the form

minimize c>x

subject to p>i x ≤ qi, i = 1, . . . ,m,

Ax = b.

(23.4)

In the last section, we dealt with the equality constrained setting, motivated by which we consider
the following equivalent setting of (23.3).

minimize f(x) +
m∑
i=1

IR−(gi(x))

subject to Ax = b

(23.5)

where R− = {x ∈ R : x ≤ 0} and IR− is the associated indicator function. Here, the indicator
function IR− is non-smooth. One way of dealing with this is to approximate the indicator function,
for which we consider so-called barrier functions. There are two common examples for barrier
functions as follows.

log-barrier : ψ(x) = −
m∑
i=1

log(−gi(x)),

inverse : ψ(x) = −
m∑
i=1

1

gi(x)
.

The important property of barrier function ψ(x) is that as gi(x) approaches 0, ψ(x) gets arbitrarily
large and goes to +∞. Note that both functions are convex if g1, . . . , gm are convex. In this section,
we focus on the log-barrier function. For the linear program given by (23.4), the corresponding
log-barrier function is given by

ψ(x) = −
m∑
i=1

log(qi − p>i x).
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Before we discuss some specific properties of the log-barrier function, we explain the general outline
of the barrier method and related concepts. The basic idea is to consider

minimize f(x) +
1

t
ψ(x)

subject to Ax = b
(23.6)

where ψ is the barrier function and t > 0 is a parameter that we increase over time.

3.1 Central path

Suppose for now that (23.6) has a unique optimal solution. Note that (23.6) is equivalent to

minimize tf(x) + ψ(x)

subject to Ax = b
(23.7)

In fact, the uniqueness can be guaranteed for many of the important applications as the negative
log function − log x is strictly convex. For example, linear programs and quadratic programs. Let

x?(t) = argmin
x
{tf(x) + ψ(x) : Ax = b} .

Here, the set consists of the optimal solutions for varying values of t

{x?(t) : t > 0}

is referred to as the central path. Note that each point x?(t) is a feasible solution to (23.3),
and therefore, the central path is fully contained in the feasible region of the original optimization
problem (23.3). Figure 23.11 shows the central path for a linear program, Here, the dotted contours

Figure 23.1: Central path for a linear program

correspond to the log-barrier function. Interestingly, the hyperplane c>x = c>x?(t) containing x?(t)
with direction c is tangent to the contour containing x?(t). This can be seen from characterizing
the central path with the KKT conditions.

1The figure is taken from the lecture slides of Stanford University’s EE364a: Convex Optimization by Boyd and
Vandenberghe.
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Note that the gradient of the log-barrier function is given by

∇ψ(x) = −
m∑
i=1

1

gi(x)
∇gi(x).

As the Lagrangian of (23.7) is given by

L(x, µ) = tf(x) + ψ(x) + µ>(Ax− b),

the KKT conditions state that x?(t) is optimal to (23.7) if and only if there exists µ? such that

t∇f(x?(t))−
m∑
i=1

1

gi(x?(t))
∇gi(x?(t)) +A>µ? = 0,

gi(x
?(t)) < 0, i = 1, . . . ,m,

Ax?(t) = b.

For a linear program with an equality constraint, i.e. A = 0 and b = 0, the characterization of
x?(t) states that

t · c = −∇ψ(x?(t)) =

m∑
i=1

1

p>i x− qi
pi.

Note that the direction of the tangent hyperplane at x?(t) is given by ∇ψ(x?(t)) and it is a scaling
of the objective direction c.

3.2 Duality gap

By definition, x?(t) is feasible to (23.3) by definition. We may construct a feasible dual solution
associated with x?(t). Let λ?i (t) and µ?(t) be defined as

λ?i (t) = − 1

t · gi(x?(t))
, i = 1, . . . ,m, µ?(t) =

µ?

t
.

By definition, it follows that

∇f(x?(t)) +

m∑
i=1

λi∇gi(x?(t)) +A>µ?(t) = 0,

λ?i (t) > 0, i = 1, . . . ,m.

This implies that

L(x?(t), λ?(t), µ?(t)) = f(x?(t)) +

m∑
i=1

λ?i (t)gi(x
?(t)) + µ?(t)>(Ax?(t)− b)

= min
x

{
f(x) +

m∑
i=1

λ?i (t)gi(x) + µ?(t)>(Ax− b)

}
= q(λ?(t), µ?(t))

where L(x, λ, µ) is the Lagrangian function for (23.3). Furthermore,

f(x?(t))− q(λ?(t), µ?(t)) = −
m∑
i=1

λ?i (t)gi(x
?(t))− µ?(t)>(Ax?(t)− b) =

m

t
.
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Since the Lagrangian dual function q(λ, µ) provides a lower bound on the optimal value of (23.3),
it follows that

f(x?(t))−min {f(x) : gi(x) ≤ 0, i = 1, . . . ,m, Ax = b} ≤ m

t
.

This suggests an algorithm for solving (23.3).

3.3 Implementing the barrier method

Suppose that the desired accuracy for solving (23.3) is ε. In other words, we want to find a feasible
solution x such that

f(x)−min {f(x) : gi(x) ≤ 0, i = 1, . . . ,m, Ax = b} ≤ ε.

In this case, we may choose t = m/ε and obtain x?(m/ε) by applying the barrier method. However,
when ε is tiny, solving (23.7) with huge t = m/ε can be numerically unstable. Hence, in practice,
we incrementally increase the value of t instead of setting it to a large value upfront. Here is the
general template.

1. Initialize t0 > 0 and α > 1.

2. Obtain x0 = x?(t0).

3. For k = 1, 2, 3, . . ., repeat the following.

• Set tk = αtk−1.

• Apply Newton’s method initialized at xk−1 to obtain xk = x?(tk).

• Break if m/tk ≤ ε.

We may easily deduce the convergence analysis of the barrier method. Suppose that k is the
smallest number such that m/tk ≤ ε. This means that

m

αk−1t0
≥ ε,

which in turn implies that

k ≤ 1 +
1

logα
log

m

t0ε
= O

(
log

m

ε

)
.

3.4 Perturbed KKT conditions

Recall that λ?i (t) and µ?(t) defined as

λ?i (t) = − 1

t · gi(x?(t))
, i = 1, . . . ,m, µ?(t) =

µ?

t

together with x?(t) satisfy ∇f(x?(t)) +
∑m

i=1 λi∇gi(x?(t)) + A>µ = 0. By definition, (x, λ, µ) =
(x?(t), λ?(t), µ?(t)) satisfies

∇f(x) +
m∑
i=1

λi∇gi(x) +A>µ = 0,

λigi(x) = −1

t
, i = 1, . . . ,m,

gi(x) ≤ 0, i = 1, . . . ,m

Ax = b,

λi ≥ 0, i = 1, . . . ,m.

(23.8)
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Here, the only difference between this system and the KKT conditions is the condition λigi(x) =
−1/t for i ∈ [m]. In fact, as t → +∞ , the condition gets close to the complementary slackness
condition λigi(x) = 0 for i ∈ [m]. For this reason, the conditions (23.8) are referred to as the
perturbed KKT conditions.
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