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1 Outline

In this lecture, we study

• Augmented Lagrangian method,

• Alternating direction method of multipliers (ADMM).

2 Augmented Lagrangian method

We consider

minimize f(x)

subject to Ax = b.

We observed that its dual is given by

maximize − f∗(−A⊤µ)− b⊤µ,

which is equivalent to

(−1) × minimize f∗(−A⊤µ) + b⊤µ,

Remember that the dual subgradient method solves the dual problem. In this section, we derive
and study another algorithm that solves the dual formulation.

2.1 Proximal point algorithm applied to the dual

The proximal point algorithm proceeds with the following update rule.

µt+1 = argmin
µ

{
f∗(−A⊤µ) + b⊤µ+

1

2η
∥µ− µt∥22

}
.

By the optimality condition,

0 ∈ −A∂f∗(−A⊤µt+1) + b+
1

η
(µt+1 − µt).

Hence,
µt+1 = µt + η(Axt − b) where xt ∈ ∂f∗(−A⊤µt+1).

Note that xt ∈ ∂f∗(−A⊤µt+1) holds if and only if −A⊤µt+1 ∈ ∂f(xt), which is equivalent to

0 ∈ ∂f(xt) +A⊤µt+1 ↔ 0 ∈ ∂f(xt) +A⊤(µt + η(Axt − b))

↔ 0 ∈ ∂f(xt) +A⊤µt + ηA⊤(Axt − b)

↔ xt ∈ argmin
x

{
f(x) + µ⊤

t (Ax− b) +
η

2
∥Ax− b∥22

}
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Hence, the proximal point algorithm for the dual problem works with the following update rule.

xt ∈ argmin
x

{
f(x) + µ⊤

t (Ax− b) +
η

2
∥Ax− b∥22

}
µt+1 = µt + η(Axt − b).

This is precisely, the augmented Lagrangian method (ALM).

Algorithm 1 Augmented Lagrangian method

Initialize µ1.
for t = 1, . . . , T do

Find xt ∈ argminx
{
f(x) + µ⊤

t (Ax− b) + η
2∥Ax− b∥22

}
.

Update µt+1 = µt + η(Axt − b).
end for

Notice that the augmented Lagrangian method is the dual gradient method applied to the following
equivalent formulation of the primal problem.

minimize f(x) +
η

2
∥Ax− b∥22

subject to Ax = b.

Note that the objective is strongly convex, which implies that the dual objective becomes smooth.

2.2 Moreau-Yosida smoothing of the dual

In the previous section, we saw that the proximal point algorithm applied to the dual is equivalent
to the gradient method applied to the dual of

minimize f(x) +
η

2
∥Ax− b∥22

subject to Ax = b.

From the previous lecture, we learned that the proximal point algorithm is equivalent to the gradient
method applied to the Moreau-Yosida smoothing. Does this imply that the dual of the augmented
problem min{f(x) + η

2∥Ax − b∥22 : Ax = b} is equivalent to the Moreau-Yosida smoothing of the
dual of the original problem min{f(x) : Ax = b}?
Let us derive the Moreau-Yosida smoothing of the dual of the original problem min{f(x) : Ax = b}.
Recall that the dual of

min {f(x) : Ax = b}

is equivalent to

(−1) × minimize h(µ) = f∗(−A⊤µ) + b⊤µ.

Then the Moreau-Yosida smoothing of the dual min{h(µ)} is given by

minimize hη(µ)

where

hη(µ) = inf
u

{
h(u) +

1

2η
∥u− µ∥22

}
= inf

u

{
f∗(−A⊤u) + b⊤u+

1

2η
∥u− µ∥22

}
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is the Moreau-Yosida smoothing of h(µ).

Next we claim that min{hη(µ)} is equal to the dual of

minimize f(x) +
η

2
∥Ax− b∥22

subject to Ax = b.

To show this, we take the dual of min{hη(µ)}. Note that

minimize hη(µ) = minimize hη(−(−I)⊤µ) + 0⊤µ.

Therefore, the dual of min{hη(µ)} is

minimize h∗η(y)

subject to − y = 0.

Recall that
h∗η(y) = h∗(y) +

η

2
∥y∥22

Note that

h∗(y) = sup
µ

{
y⊤µ− f∗(−A⊤µ)− b⊤µ

}
= sup

µ

{
−f∗(−A⊤µ)− (b− y)⊤µ

}
= inf

x
{f(x) : Ax = b− y}

where the last equality follows from strong duality. Then

h∗η(y) = inf
x
{f(x) : y = b−Ax}+ η

2
∥y∥22.

This implies that the dual problem is equivalent to

minimize f(x) +
η

2
∥b−Ax∥22

subject to Ax = b.

3 Dual of composite minimization

We consider
minimize f(x) + g(Ax),

which is equivalent to

minimize f(x) + g(y)

subject to Ax = y.

Moreover, it can be rewritten as

minimize f(x) + g(y)

subject to Ax− y = 0.
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Algorithm 2 Dual gradient method for composite problems

Initialize µ1.
for t = 1, . . . , T − 1 do

Obtain xt ∈ argminx f(x) + µ⊤
t Ax and yt ∈ argminy g(y)− µ⊤

t y.
Update µt+1 = µt + ηt(Axt − yt) for a step size ηt > 0.

end for

Then we may apply the dual gradient method developed for separable objective functions.

Basically, at each iteration, we minimize the Lagrangian function at µ = µt:

f(x) + g(y) + µ⊤
t (Ax− y).

Instead, the augmented Lagrangian method considers the augmented Lagrangian function given by

f(x) + g(y) + µ⊤
t (Ax− y) +

η

2
∥Ax− y∥22.

Here, µt changes over iterations while η remains constant.

Algorithm 3 Augmented Lagrangian method for composite problems

Initialize µ1.
for t = 1, . . . , T − 1 do

Obtain (xt, yt) ∈ argmin(x,y) f(x) + g(y) + µ⊤
t (Ax− y) + η

2∥Ax− y∥22,
Update µt+1 = µt + η(Axt − yt).

end for

As we observed that the augmented Lagrangian method is equivalent to the proximal point algo-
rithm applied to the dual, we will check this for the composite optimization problem as well.

3.1 Proximal gradient applied to the dual

Let us apply the proximal gradient method to the dual of the composite problem. Throughout this
subsection, let us assume that f∗ is differentiable. Again, the dual is given by

minimize f∗(−A⊤µ) + g∗(µ).

The proximal gradient method proceeds with

µt+1 = proxηg∗
(
µt + ηA∇f∗(−A⊤µt)

)
since the gradient of h(µ) = f∗(−A⊤µ) is ∇h(µ) = −A∇f∗(−A⊤µ). Moreover, xt = ∇f∗(−A⊤µt)
if and only if −A⊤µt ∈ ∂f(xt) which is equivalent to xt ∈ argminx f(x)+µ⊤

t Ax. Hence, the update
rule is equivalent to

xt ∈ argmin
x

f(x) + µ⊤
t Ax,

µt+1 = proxηg∗ (µt + ηAxt) .

Furthermore, by the Moreau decomposition theorem, it follows that

µt+1 = µt + ηAxt − η proxg/η(µt/η +Axt).
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Here, yt = proxg/η(µt/η +Axt) if and only if

µt

η
+Axt − yt ∈

1

η
∂g(yt)

which is equivalent to

yt ∈ argmin
y

{
g(y) + µ⊤

t (Axt − y) +
η

2
∥Axt − y∥22

}
.

Therefore, the proximal gradient descent applied to the dual is given by the following pseudo-code.

Algorithm 4 Proximal gradient for composite problems

Initialize µ1.
for t = 1, . . . , T − 1 do

Obtain xt ∈ argminx f(x) + µ⊤
t Ax,

Obtain yt ∈ argminy
{
g(y) + µ⊤

t (Axt − y) + η
2∥Axt − y∥22

}
,

Update µt+1 = µt + η(Axt − yt).
end for

3.2 ADMM

Lastly, we discuss the alternating direction method of multipliers (ADMM). Its pseudo-code is given
by the following.

Algorithm 5 Alternating direction method of multipliers

Initialize µ1 and y0.
for t = 1, . . . , T − 1 do

Obtain xt ∈ argminx
{
f(x) + g(yt−1) + µ⊤

t (Ax− yt−1) +
η
2∥Ax− yt−1∥22

}
,

Obtain yt ∈ argminy
{
f(xt) + g(y) + µ⊤

t (Axt − y) + η
2∥Axt − y∥22

}
,

Update µt+1 = µt + η(Axt − yt).
end for

ADMM is equivalent to the Douglas-Rachford splitting method applied to the dual problem.
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