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1 Outline

In this lecture, we study

e Fenchel duality.

e Fenchel conjugate.

2 Fenchel conjugate

2.1 Some properties

The following statements hold.

o Let f(x1,22) = fi(x1) + fa(x2). Then f*(y1,y2) = fi(v1) + f3(y2)-
e Let g(x) = f(x) + c'z +d. Then g*(y) = f*(y — ¢) — d.
o Let g(x) = f(z —b). Then g*(y) =bTy + [*(y).

o Let f(2) = infuty=s {g(u) + h(v)}. Then f*(y) = ¢"(y) + 1" (y)-
Lemma 18.1. For any closed function f : R¢ — R, its Fenchel conjugate f* is closed and convex.

Proof. We have already observed that f* is convex. Let h, : R? — R for any « € dom(f) be defined
as hz(y) =y 'z — f(x). Note that

epi(he) = {(y,t) €R*x R: t >y a — f(z)}
is closed. By definition, we have f*(y) = Supycqom(s){h=(y)}, implying in turn that
epi(f*) = [ epi(ha).
z€dom(f)

As the intersection of arbitrarily many closed sets is closed, epi(f*) is closed, and therefore, f* is
closed. O

Lemma 18.2. For any function f : R® — R, we have f** < f.
Proof. Let x € dom(f) Note that if x — z 75 0, then sup,cpa {y x—2z)+ f(z } +oo. If z =z,
we have sup,cra {y x—2z)+ f(z } f(x). Therefore,

f(z)= inf sup {yT(a:—z) —i—f(z)}.

z€dom(f) y€ERd



Note that

inf su Tz —2)+ f(z > su inf T —2)+ f(z
Zedommy@g{y( )+ ()} y@gzedomm{“ )+ ()}

= sup {yTaz+ inf(f) {—yTz+f(z)}}

yERd z€dom

= sup {yTx— sup {yTz—f(Z)}}
yeRd z€dom(f)

= sup {yT:C - f*(y)}

yeRd

> e o)

yedom(f*)
= 7).
Therefore, f(x) > f**(z) for any = € dom(f), and thus f > f**. O

When f is closed and convex, the equality holds, i.e., f** = f. To show this, we need the following
theorem.

Theorem 18.3 (Strict point-to-convex set separation). Let C' C R? be a closed convex set and
y & C. Then infycc ||z — y|| > 0. Furthermore, there exists o € R? and 8 € R such that

a'z>pB VeeC,

o'y < B.
Lemma 18.4. For a closed convex function f:R% — R, we have f** = f.

Proof. Next, assume that f is closed and convex. We will show that epi(f) = epi(f**). As f > f**,
we already know that epi(f) C epi(f**). Suppose for a contradiction that there exists & such that
(z, f**(z)) ¢ epi(f). Then, by Theorem 18.3, there exists a € R?, v € R, and 3 € R such that

o'zt >p V(x,t) € epi(f),
o Ty (T) < B.
Let 6 =8 — (aTa_c + 'yf**(;f)) > 0. Then for any (x,t) € epi(f),
<aTa: + ’yt) — (anz + ’)/f**(a?)) >fB— (aTa? —|—'yf**(5c)) =§>0.

Here, t can be arbitrarily large with (z,t) € epi(f), so v > 0. Suppose that v = 0. Let ¢ be a
sufficiently small number and y € dom(f*). Now consider

((a )T+ 6t> - ((a — )Tz + ef**(gz)) >6—e(§ z—t+7 T+ 7).

inf { ((a — egj)Tx + €t> — ((a — GQ)Ta? + Gf**(f)>}

(z,t)€epi(f)

> inf {0-e§a—t+g Ttz

> nt Ao —eTa -t gTed @) |
> inf 5 — =T .. =T = ok [ —
> ot {0 yTe— f@) +yTe 4 @) )

=0—e(f*(@) —y T+ (@)
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Making e sufficiently small, we have

Lomt { ((a —ep)Tz+ et) - ((a )zt e f**(gz))} 0.

Therefore, we have just argued that there exists & € R, v € R, and 6§ > 0 such that v > 0 and

inf " {(aTx + 7t> - (an +’yf**(:i')>} >6>0.

(z,t)€epi
Then
inf a/y) (x— &)+t — f*(@)p >5/v> 0.
wott AT a2 i @) >0/
Note that
inf a/y) (x—Z)+t— f*@) = inf /) (z —7) + f(x) — ™z
wot AT @i @ = ot {0 -2+ f@) - 7@
= (—a/nTz— @~ sw {(-a/n)Tz-f(2)}
z€dom(f)
= (—a/) "z = (@) = f(—a/7)
< (—a/)'E - (—a/y)'z
=0
where the inequality follows from the Fenchel-Young inequality. O

2.2 Moreau decomposition

Remember that for a quadratic function with a positive definite matrix given by

fl#) = 5o Qu 4y,

we have Vf*(y) = (Vf)~1(y). This is implies that if y = Vf(z), then x = Vf*(y). In general, the
subdifferential of the conjugate is the inverse of the subdifferential.

Theorem 18.5. Let f : R — R be a closed and convex function. Then the following statements
are equivalent.

(i) y € 0f(z),
(it) x € Of(y),
(iii) y'x = f(z) + f*(y)-
Proof. Assume that y € 0f(z). Then z € dom(f) and 0 € —y + 9f(z). Consider

F)= swp (F'a—f@)=— inf (=g z+f(2)).
z€dom(f) z€dom(f)

Since 0 € —y + df(x), T is the minimizer, and therefore,

Fo)=-(-y'z+f@)=y"z- f(2)



Hence, y € dom(f*). Again, the definition of f*(y) implies that for any y € dom(f*),
Fwzy'z—f@=@u-9"7+f@

Therefore, T is a subgradient of f* at y, and thus z € Jf*(y). Hence, we have just proved the

direction (i) — (i4i) — (7i). Since f is closed and convex, f* is closed and convex and f = f**.

Then, by symmetry, we can also argue that (i) — (iii) — (i). Therefore, (i), (ii), and (iii) are all
equivalent. O

Using the theorem, we can show the following result.
Theorem 18.6 (Moreau decomposition). Let f : R? — R be a closed convex function. Then
T = prox¢(x) + proxs. ().

Proof. Let u = proxg(z), then z — u € df(u). This implies that u € 0f*(z —u). Let v = x — u.
Then we have x — v € 9f*(v), implying in turn that v = prox s« (z). Therefore,

prox¢(r) + proxs(r) =u+v=u+z —u =z,
as required. O

Example 18.7. Let V C R? be a linear subspace, and let f = Iy : R — R be the indicator
function of U. Note that
f*(y) = sup,ey {yTﬂc} = Iy (y).
Then .
pross(z) = arganin { 1 (u) + 3 Ju — ol } = projy (a),

ueRd

and )
prox;. () = argmin {IvL (u) + =fju— x||§} = projy . ().

u€R4 2

Therefore, the Moreau decomposition theorem states that

2 = projy (x) + projy .« (x).
2.3 Fenchel dual

Consider the following composite optimization problem.
minimize f(z) + g(Ax) (18.1)
for some matrix A € R™*?, This problem is equivalent to

minimize f(x) + g(y)

18.2
subject to y = Ax. ( )

Then the Lagrangian dual function is given by

inf  f(2)+ g(y) + nT(Az ) = —sup {~F(2) = g(y) + uT (- Az +3) |
5 z,y

= —sup {(—ATM)T.’E — f(l‘) + ,U«T?/ - g(y)}
T,y

= —sup {(—ATM)TJJ - f(z)} — sup {uTy - g(y)}
= — [ (=ATp) — g ().
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Therefore, the Lagrangian dual problem is given by
maximize — f*(—A'p) — g*(p).

Moreover, note that (18.2) is linearly constrained. If f and g are convex, then Slater’s condition
holds (assuming dom(f) = R? and dom(g) = R™), in which case, strong duality holds. Therefore,

minimize f(z) + g(Az) = minmax f(z) + g(y) + ' (Az — y)

Ty n
= maxmin f(z) +g(y) + ' (Ax —y)

= maximize — f*(—A"p) — g*(p).
Example 18.8. Given a convex set C, consider

minimize f(x)
subject to Ax —be C.

Using the indicator function, it is equivalent to
minimize f(z) + Ic(Azx —b).

We can set g(y) = Ic(y — b). Then

g7 = sup_ {uTu} = sup {MT(U + b)} = b+ I ().

Hence, the Fenchel dual is given by
maximize —b'pu— f*(—ATp) — I5(w).
Example 18.9. Consider

minimize f(z)

subject to Ax =b.

The constraint is equivalent to Az — b € {0}. Since {0} is a trivial vector space and ({0})*" = R,
we have that Ifo}(y) =0 for any y € R% Then the corresponding dual is

maximize —b'pu— f*(—Ap).
Example 18.10. Consider

minimize f(z)
subject to ||Az —b|| <1

The constraint is equivalent to Ax —b € C ={y: ||y| < 1}. Note that

IE(p) = sup p'y = [l
lyll<1

In this case, the Fenchel dual is given by
maximize —b'p— f*(—A"p) — ||pl|+.
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Example 18.11. Consider
minimize f(z) + ||z||

for some A > 0. Here, define g(y) = ||y||. Note that

g () = sup {Tu — |lull } = Ie(n)
u

where C' = {u : ||u|lx < 1}. Then the corresponding dual is
maximize — f*(—p)
subject to ||ull« < 1.

3 Dual gradient method

We consider

minimize f(z)

subject to Ax =b.
We observed that its dual is given by
maximize — f*(—A"p)—b"p.
Then the problem is equivalent to
(=1) x minimize f*(—ATp)+b" p.

As f* is convex, this dual forumulation is a convex minimization problem. Let us apply the
subgradient method to the dual.

Given py, let g, € 0 ( [H(=AT ) + bT,ut). Then the subgradient method applies the following
update rule.

Hi+1 = Kt — e Gt
Here, what is a subgradient ¢;? Note that

O (F (= AT ) + 67 ) —-A Of* (AT i) +b.

subdifferential of f*(u) at p= —AT yy

subdifferential of f*(—ATpu) +b" p at p =
Hence, g, € 0 (f*(—A" ) +b" i) if and only if
gi € —ADf* (AT ) +b.

Therefore,
gt = —Ax; +b for some x; € 8f*(—AT,ut).

Moreover, we have also observed that x; € 9f*(—AT ;) if and only if —ATpu; € 0f(x;). Here,
— ATy € 0f () holds if and only if 0 € Of(z¢) + AT py which is equivalent to

x; € argmin f(z) + p, Az.
x
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Note that s, b remains constant as x changes, so z; € argmin,, f(z) + ) Az is equivalent to

x; € argmin f(z) + p, (Az —b).

Therefore, the subgradient method applied to the dual problem proceeds with
x; € argmin f(z) + p, (Az —b),
pir1 = g+ ne(Axg —b).

Here, f(x) + u; (Az — b) is the Lagrangian function £(z, ) at g = py. In words, the subgradient
method applied to the dual problem works as follows. At each iteration ¢ with a given dual multiplier
e, we find a minimizer of the Lagrangian function £(x, p¢). Then we use the corresponding dual
subgradient Ax; — b to obtain a new multiplier fi41.

Algorithm 1 Subgradient method for the dual problem
Initialize p.
fort=1,...., T —1do
Obtain z; € argmin, f(z) + u, (Az —b),
Update pr1 = pe + ne(Azy — b) for a step size 1, > 0.
end for

At each iteration, we find a minimizer of the Lagrangian function £(x, u:), which gives rise to an
unconstrained optimization problem. Hence, the dual approach is useful when there is a complex
system of constraints.
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