<u>Lecturer: Dabeen Lee</u>

1 Outline

In this lecture, we study

- Fenchel duality.
- Fenchel conjugate.

2 Fenchel conjugate

2.1 Some properties

The following statements hold.

- Let $f(x_1, x_2) = f_1(x_1) + f_2(x_2)$. Then $f^*(y_1, y_2) = f_1^*(y_1) + f_2^*(y_2)$.
- Let $g(x) = f(x) + c^{T}x + d$. Then $g^{*}(y) = f^{*}(y c) d$.
- Let g(x) = f(x b). Then $g^*(y) = b^{\top} y + f^*(y)$.
- Let $f(x) = \inf_{u+v=x} \{g(u) + h(v)\}$. Then $f^*(y) = g^*(y) + h^*(y)$.

Lemma 18.1. For any closed function $f: \mathbb{R}^d \to \mathbb{R}$, its Fenchel conjugate f^* is closed and convex.

Proof. We have already observed that f^* is convex. Let $h_x : \mathbb{R}^d \to \mathbb{R}$ for any $x \in \text{dom}(f)$ be defined as $h_x(y) = y^\top x - f(x)$. Note that

$$\operatorname{epi}(h_x) = \{(y, t) \in \mathbb{R}^d \times \mathbb{R} : t \ge y^\top x - f(x)\}\$$

is closed. By definition, we have $f^*(y) = \sup_{x \in \text{dom}(f)} \{h_x(y)\}$, implying in turn that

$$\operatorname{epi}(f^*) = \bigcap_{x \in \operatorname{dom}(f)} \operatorname{epi}(h_x).$$

As the intersection of arbitrarily many closed sets is closed, epi(f^*) is closed, and therefore, f^* is closed.

Lemma 18.2. For any function $f : \mathbb{R}^d \to \mathbb{R}$, we have $f^{**} \leq f$.

Proof. Let $x \in \text{dom}(f)$. Note that if $x - z \neq 0$, then $\sup_{y \in \mathbb{R}^d} \left\{ y^\top (x - z) + f(z) \right\} = +\infty$. If z = x, we have $\sup_{y \in \mathbb{R}^d} \left\{ y^\top (x - z) + f(z) \right\} = f(x)$. Therefore,

$$f(x) = \inf_{z \in \text{dom}(f)} \sup_{y \in \mathbb{R}^d} \left\{ y^\top (x - z) + f(z) \right\}.$$

Note that

$$\inf_{z \in \text{dom}(f)} \sup_{y \in \mathbb{R}^d} \left\{ y^\top (x - z) + f(z) \right\} \ge \sup_{y \in \mathbb{R}^d} \inf_{z \in \text{dom}(f)} \left\{ y^\top (x - z) + f(z) \right\}$$

$$= \sup_{y \in \mathbb{R}^d} \left\{ y^\top x + \inf_{z \in \text{dom}(f)} \left\{ -y^\top z + f(z) \right\} \right\}$$

$$= \sup_{y \in \mathbb{R}^d} \left\{ y^\top x - \sup_{z \in \text{dom}(f)} \left\{ y^\top z - f(z) \right\} \right\}$$

$$= \sup_{y \in \mathbb{R}^d} \left\{ y^\top x - f^*(y) \right\}$$

$$\ge \sup_{y \in \text{dom}(f^*)} \left\{ y^\top x - f^*(y) \right\}$$

$$= f^{**}(x).$$

Therefore, $f(x) \ge f^{**}(x)$ for any $x \in \text{dom}(f)$, and thus $f \ge f^{**}$.

When f is closed and convex, the equality holds, i.e., $f^{**} = f$. To show this, we need the following theorem.

Theorem 18.3 (Strict point-to-convex set separation). Let $C \subseteq \mathbb{R}^d$ be a closed convex set and $y \notin C$. Then $\inf_{x \in C} ||x - y|| > 0$. Furthermore, there exists $\alpha \in \mathbb{R}^d$ and $\beta \in \mathbb{R}$ such that

$$\alpha^{\top} x > \beta \quad \forall x \in C,$$

 $\alpha^{\top} y < \beta.$

Lemma 18.4. For a closed convex function $f: \mathbb{R}^d \to \mathbb{R}$, we have $f^{**} = f$.

Proof. Next, assume that f is closed and convex. We will show that $\operatorname{epi}(f) = \operatorname{epi}(f^{**})$. As $f \geq f^{**}$, we already know that $\operatorname{epi}(f) \subseteq \operatorname{epi}(f^{**})$. Suppose for a contradiction that there exists \bar{x} such that $(\bar{x}, f^{**}(\bar{x})) \notin \operatorname{epi}(f)$. Then, by Theorem 18.3, there exists $\alpha \in \mathbb{R}^d$, $\gamma \in \mathbb{R}$, and $\beta \in \mathbb{R}$ such that

$$\alpha^{\top} x + \gamma t > \beta \quad \forall (x, t) \in \operatorname{epi}(f),$$

$$\alpha^{\top} \bar{x} + \gamma f^{**}(\bar{x}) < \beta.$$

Let $\delta = \beta - (\alpha^{\top} \bar{x} + \gamma f^{**}(\bar{x})) > 0$. Then for any $(x, t) \in \text{epi}(f)$,

$$\left(\alpha^{\top} x + \gamma t\right) - \left(\alpha^{\top} \bar{x} + \gamma f^{**}(\bar{x})\right) > \beta - \left(\alpha^{\top} \bar{x} + \gamma f^{**}(\bar{x})\right) = \delta > 0.$$

Here, t can be arbitrarily large with $(x,t) \in \operatorname{epi}(f)$, so $\gamma \geq 0$. Suppose that $\gamma = 0$. Let ϵ be a sufficiently small number and $\bar{y} \in \operatorname{dom}(f^*)$. Now consider

$$\left((\alpha - \epsilon \bar{y})^{\top} x + \epsilon t \right) - \left((\alpha - \epsilon \bar{y})^{\top} \bar{x} + \epsilon f^{**}(\bar{x}) \right) > \delta - \epsilon (\bar{y}^{\top} x - t + \bar{y}^{\top} \bar{x} + f^{**}(\bar{x})).$$

$$\inf_{\substack{(x,t) \in \operatorname{epi}(f) \\ (x,t) \in \operatorname{epi}(f)}} \left\{ \left((\alpha - \epsilon \bar{y})^{\top} x + \epsilon t \right) - \left((\alpha - \epsilon \bar{y})^{\top} \bar{x} + \epsilon f^{**}(\bar{x}) \right) \right\}$$

$$\geq \inf_{\substack{(x,t) \in \operatorname{epi}(f) \\ (x,t) \in \operatorname{epi}(f)}} \left\{ \delta - \epsilon (\bar{y}^{\top} x - t + \bar{y}^{\top} \bar{x} + f^{**}(\bar{x})) \right\}$$

$$\geq \inf_{\substack{x \in \operatorname{dom}(f) \\ x \in \operatorname{dom}(f)}} \left\{ \delta - \epsilon (\bar{y}^{\top} x - f(x) + \bar{y}^{\top} \bar{x} + f^{**}(\bar{x})) \right\}$$

$$= \delta - \epsilon (f^{*}(\bar{y}) - \bar{y}^{\top} \bar{x} + f^{**}(\bar{x})).$$

Making ϵ sufficiently small, we have

$$\inf_{(x,t)\in \operatorname{epi}(f)} \left\{ \left((\alpha - \epsilon \bar{y})^\top x + \epsilon t \right) - \left((\alpha - \epsilon \bar{y})^\top \bar{x} + \epsilon f^{**}(\bar{x}) \right) \right\} > 0.$$

Therefore, we have just argued that there exists $\alpha \in \mathbb{R}^d$, $\gamma \in \mathbb{R}$, and $\delta > 0$ such that $\gamma > 0$ and

$$\inf_{(x,t)\in \operatorname{epi}(f)} \left\{ \left(\alpha^\top x + \gamma t \right) - \left(\alpha^\top \bar{x} + \gamma f^{**}(\bar{x}) \right) \right\} \ge \delta > 0.$$

Then

$$\inf_{(x,t)\in \operatorname{epi}(f)} \left\{ (\alpha/\gamma)^{\top} (x-\bar{x}) + t - f^{**}(\bar{x}) \right\} \ge \delta/\gamma > 0.$$

Note that

$$\inf_{(x,t)\in\operatorname{epi}(f)} \left\{ (\alpha/\gamma)^\top (x-\bar{x}) + t - f^{**}(\bar{x}) \right\} = \inf_{x\in\operatorname{dom}(f)} \left\{ (\alpha/\gamma)^\top (x-\bar{x}) + f(x) - f^{**}(\bar{x}) \right\}$$

$$= (-\alpha/\gamma)^\top \bar{x} - f^{**}(\bar{x}) - \sup_{x\in\operatorname{dom}(f)} \left\{ (-\alpha/\gamma)^\top x - f(x) \right\}$$

$$= (-\alpha/\gamma)^\top \bar{x} - f^{**}(\bar{x}) - f^*(-\alpha/\gamma)$$

$$\leq (-\alpha/\gamma)^\top \bar{x} - (-\alpha/\gamma)^\top \bar{x}$$

$$= 0$$

where the inequality follows from the Fenchel-Young inequality.

2.2 Moreau decomposition

Remember that for a quadratic function with a positive definite matrix given by

$$f(x) = \frac{1}{2}x^{\top}Qx + p^{\top}x,$$

we have $\nabla f^*(y) = (\nabla f)^{-1}(y)$. This is implies that if $y = \nabla f(x)$, then $x = \nabla f^*(y)$. In general, the subdifferential of the conjugate is the inverse of the subdifferential.

Theorem 18.5. Let $f : \mathbb{R}^d \to \mathbb{R}$ be a closed and convex function. Then the following statements are equivalent.

- (i) $y \in \partial f(x)$,
- (ii) $x \in \partial f^*(y)$,
- (iii) $y^{\top}x = f(x) + f^*(y)$.

Proof. Assume that $\bar{y} \in \partial f(\bar{x})$. Then $\bar{x} \in \text{dom}(f)$ and $0 \in -\bar{y} + \partial f(\bar{x})$. Consider

$$f^*(\bar{y}) = \sup_{x \in \text{dom}(f)} (\bar{y}^\top x - f(x)) = -\inf_{x \in \text{dom}(f)} (-\bar{y}^\top x + f(x)).$$

Since $0 \in -\bar{y} + \partial f(\bar{x})$, \bar{x} is the minimizer, and therefore,

$$f^*(\bar{y}) = -(-\bar{y}^\top \bar{x} + f(\bar{x})) = \bar{y}^\top \bar{x} - f(\bar{x}).$$

Hence, $\bar{y} \in \text{dom}(f^*)$. Again, the definition of $f^*(y)$ implies that for any $y \in \text{dom}(f^*)$,

$$f^*(y) \ge y^{\top} \bar{x} - f(\bar{x}) = (y - \bar{y})^{\top} \bar{x} + f^*(\bar{y}).$$

Therefore, \bar{x} is a subgradient of f^* at \bar{y} , and thus $\bar{x} \in \partial f^*(\bar{y})$. Hence, we have just proved the direction $(i) \to (iii) \to (ii)$. Since f is closed and convex, f^* is closed and convex and $f = f^{**}$. Then, by symmetry, we can also argue that $(ii) \to (iii) \to (i)$. Therefore, (i), (ii), and (iii) are all equivalent.

Using the theorem, we can show the following result.

Theorem 18.6 (Moreau decomposition). Let $f: \mathbb{R}^d \to \mathbb{R}$ be a closed convex function. Then

$$x = \operatorname{prox}_f(x) + \operatorname{prox}_{f^*}(x).$$

Proof. Let $u = \operatorname{prox}_f(x)$, then $x - u \in \partial f(u)$. This implies that $u \in \partial f^*(x - u)$. Let v = x - u. Then we have $x - v \in \partial f^*(v)$, implying in turn that $v = \operatorname{prox}_{f^*}(x)$. Therefore,

$$\operatorname{prox}_{f}(x) + \operatorname{prox}_{f^{*}}(x) = u + v = u + x - u = x,$$

as required.

Example 18.7. Let $V \subseteq \mathbb{R}^d$ be a linear subspace, and let $f = I_V : \mathbb{R}^d \to \mathbb{R}$ be the indicator function of U. Note that

$$f^*(y) = \sup_{x \in V} \left\{ y^\top x \right\} = I_{V^\perp}(y).$$

Then

$$\operatorname{prox}_f(x) = \operatorname*{argmin}_{u \in \mathbb{R}^d} \left\{ I_V(u) + \frac{1}{2} \|u - x\|_2^2 \right\} = \operatorname{proj}_V(x),$$

and

$$\operatorname{prox}_{f^*}(x) = \operatorname*{argmin}_{u \in \mathbb{R}^d} \left\{ I_{V^{\perp}}(u) + \frac{1}{2} \|u - x\|_2^2 \right\} = \operatorname{proj}_{V^{\perp}}(x).$$

Therefore, the Moreau decomposition theorem states that

$$x = \operatorname{proj}_{V}(x) + \operatorname{proj}_{V^{\perp}}(x).$$

2.3 Fenchel dual

Consider the following composite optimization problem.

minimize
$$f(x) + g(Ax)$$
 (18.1)

for some matrix $A \in \mathbb{R}^{m \times d}$. This problem is equivalent to

minimize
$$f(x) + g(y)$$

subject to $y = Ax$. (18.2)

Then the Lagrangian dual function is given by

$$\begin{split} \inf_{x,y} \quad f(x) + g(y) + \mu^\top (Ax - y) &= -\sup_{x,y} \left\{ -f(x) - g(y) + \mu^\top (-Ax + y) \right\} \\ &= -\sup_{x,y} \left\{ (-A^\top \mu)^\top x - f(x) + \mu^\top y - g(y) \right\} \\ &= -\sup_{x} \left\{ (-A^\top \mu)^\top x - f(x) \right\} - \sup_{x} \left\{ \mu^\top y - g(y) \right\} \\ &= -f^* (-A^\top \mu) - g^* (\mu). \end{split}$$

Therefore, the Lagrangian dual problem is given by

maximize
$$-f^*(-A^\top \mu) - g^*(\mu)$$
.

Moreover, note that (18.2) is linearly constrained. If f and g are convex, then Slater's condition holds (assuming $dom(f) = \mathbb{R}^d$ and $dom(g) = \mathbb{R}^m$), in which case, strong duality holds. Therefore,

$$\begin{aligned} & \text{minimize} \quad f(x) + g(Ax) = \min_{x,y} \max_{\mu} f(x) + g(y) + \mu^{\top} (Ax - y) \\ &= \max_{\mu} \min_{x,y} f(x) + g(y) + \mu^{\top} (Ax - y) \\ &= \max \\ &= -f^* (-A^{\top} \mu) - g^* (\mu). \end{aligned}$$

Example 18.8. Given a convex set C, consider

minimize
$$f(x)$$

subject to $Ax - b \in C$.

Using the indicator function, it is equivalent to

minimize
$$f(x) + I_C(Ax - b)$$
.

We can set $g(y) = I_C(y - b)$. Then

$$g^*(\mu) = \sup_{u-b \in C} \left\{ \mu^\top u \right\} = \sup_{u \in C} \left\{ \mu^\top (u+b) \right\} = b^\top \mu + I_C^*(\mu).$$

Hence, the Fenchel dual is given by

maximize
$$-b^{\top}\mu - f^{*}(-A^{\top}\mu) - I_{C}^{*}(\mu)$$
.

Example 18.9. Consider

minimize
$$f(x)$$

subject to $Ax = b$.

The constraint is equivalent to $Ax - b \in \{0\}$. Since $\{0\}$ is a trivial vector space and $(\{0\})^{\perp} = \mathbb{R}^d$, we have that $I_{\{0\}}^*(y) = 0$ for any $y \in \mathbb{R}^d$. Then the corresponding dual is

maximize
$$-b^{\top}\mu - f^*(-A^{\top}\mu)$$
.

Example 18.10. Consider

minimize
$$f(x)$$

subject to $||Ax - b|| \le 1$

The constraint is equivalent to $Ax - b \in C = \{y : ||y|| \le 1\}$. Note that

$$I_C^*(\mu) = \sup_{\|y\| \le 1} \mu^\top y = \|\mu\|_*.$$

In this case, the Fenchel dual is given by

maximize
$$-b^{\top}\mu - f^*(-A^{\top}\mu) - \|\mu\|_*$$
.

Example 18.11. Consider

minimize
$$f(x) + ||x||$$

for some $\lambda > 0$. Here, define g(y) = ||y||. Note that

$$g^*(\mu) = \sup_{u} \left\{ \mu^\top u - \|u\| \right\} = I_C(\mu)$$

where $C = \{u : ||u||_* \le 1\}$. Then the corresponding dual is

maximize
$$-f^*(-\mu)$$

subject to $\|\mu\|_* \le 1$.

3 Dual gradient method

We consider

minimize
$$f(x)$$

subject to $Ax = b$.

We observed that its dual is given by

maximize
$$-f^*(-A^\top \mu) - b^\top \mu$$
.

Then the problem is equivalent to

$$(-1)$$
 × minimize $f^*(-A^\top \mu) + b^\top \mu$.

As f^* is convex, this dual forumulation is a convex minimization problem. Let us apply the subgradient method to the dual.

Given μ_t , let $g_t \in \partial \left(f^*(-A^\top \mu_t) + b^\top \mu_t \right)$. Then the subgradient method applies the following update rule.

$$\mu_{t+1} = \mu_t - \eta_t g_t.$$

Here, what is a subgradient g_t ? Note that

$$\underbrace{\partial \left(f^*(-A^\top \mu_t) + b^\top \mu_t \right)}_{\text{subdifferential of } f^*(-A^\top \mu) + b^\top \mu \text{ at } \mu = \mu_t} = -A \underbrace{\partial f^*(-A^\top \mu_t)}_{\text{subdifferential of } f^*(\mu) \text{ at } \mu = -A^\top \mu_t} + b.$$

Hence, $g_t \in \partial \left(f^*(-A^\top \mu_t) + b^\top \mu_t \right)$ if and only if

$$g_t \in -A\partial f^*(-A^{\top}\mu_t) + b.$$

Therefore,

$$g_t = -Ax_t + b$$
 for some $x_t \in \partial f^*(-A^\top \mu_t)$.

Moreover, we have also observed that $x_t \in \partial f^*(-A^\top \mu_t)$ if and only if $-A^\top \mu_t \in \partial f(x_t)$. Here, $-A^\top \mu_t \in \partial f(x_t)$ holds if and only if $0 \in \partial f(x_t) + A^\top \mu_t$ which is equivalent to

$$x_t \in \operatorname*{argmin}_x f(x) + \mu_t^\top A x.$$

Note that $\mu_t^{\top}b$ remains constant as x changes, so $x_t \in \operatorname{argmin}_x f(x) + \mu_t^{\top}Ax$ is equivalent to

$$x_t \in \operatorname*{argmin}_x f(x) + \mu_t^\top (Ax - b).$$

Therefore, the subgradient method applied to the dual problem proceeds with

$$x_t \in \underset{x}{\operatorname{argmin}} f(x) + \mu_t^{\top} (Ax - b),$$

$$\mu_{t+1} = \mu_t + \eta_t (Ax_t - b).$$

Here, $f(x) + \mu_t^{\top}(Ax - b)$ is the Lagrangian function $\mathcal{L}(x, \mu)$ at $\mu = \mu_t$. In words, the subgradient method applied to the dual problem works as follows. At each iteration t with a given dual multiplier μ_t , we find a minimizer of the Lagrangian function $\mathcal{L}(x, \mu_t)$. Then we use the corresponding dual subgradient $Ax_t - b$ to obtain a new multiplier μ_{t+1} .

Algorithm 1 Subgradient method for the dual problem

```
Initialize \mu_1.

for t = 1, ..., T - 1 do

Obtain x_t \in \operatorname{argmin}_x f(x) + \mu_t^\top (Ax - b),

Update \mu_{t+1} = \mu_t + \eta_t (Ax_t - b) for a step size \eta_t > 0.

end for
```

At each iteration, we find a minimizer of the Lagrangian function $\mathcal{L}(x, \mu_t)$, which gives rise to an unconstrained optimization problem. Hence, the dual approach is useful when there is a complex system of constraints.