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1 Outline

In this lecture, we study

• Proximal point algorithm,

• KKT conditions,

• Lagrangian duality.

2 Proximal point algorithm

Remember that the proximal gradient method works for the following composite minimization
problem.

minimize f(x) = g(x) + h(x).

The proximal gradient method proceeds with the update rule

xt+1 = proxηh(xt − η∇g(x)).

In this section, we discuss the proximal point method, which is a special case of proximal gradient,
and its application to the dual problem. Note that minimizing a closed convex function f can be
written as a (trivial) composite minimization as follows.

minimize f(x) = 0 + f(x).

Here, the first part is g = 0, which is trivially smooth, and the second part is h = f . Then the
corresponding proximal gradient update is given by

xt+1 = proxηf (xt).

The algorithm with this update rule is referred to as the proximal point method. As g = 0 is
smooth, the proximal point algorithm converges with a rate of O(1/T ).

Algorithm 1 Proximal point algorithm

Initialize x1.
for t = 1, . . . , T do

Update xt+1 = proxηf (xt).
end for
Return xT+1.

Theoretically, we can use any function ht to run the proximal point algorithm, even if the objective
is not ht, in which case, the update rule corresponds to

xt+1 = proxηht
(xt).
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Hence, at each time step t, we may use a different function ht hypothetically. Let us consider the
first-order approximation of the objective function f at x = xt.

ht(x) = f(xt) +∇f(xt)
⊤(x− xt).

We know that f(x) ≥ ht(x) for all x by convexity. Then what is the proximal point update with
ht? Note that

proxηht
(xt) = argmin

u

{
f(xt) +∇f(xt)

⊤(u− xt) +
1

2η
∥u− xt∥22

}
= xt − η∇f(xt).

Therefore, the proximal point algorithm with the first-order approximation of f is precisely gradient
descent. Hence, one can interpret gradient descent as an instance of the proximal point algorithm.

Let us now compare the proximal point algorithm with the objective f and gradient descent.

Lemma 16.1. proxηf (x) = (I + η∂f)−1(x).

Proof. Let u = proxηf (x). Remember that u = proxηf (x) if and only if x− u ∈ η∂f(u). Note that
x − u ∈ η∂f(u) is equvialent to x ∈ (I + η∂f)(u), which is equivalent to u ∈ (I + η∂f)−1(x). In
summary,

u = proxηf (x) ↔ u ∈ (I + η∂f)−1(x).

Since u is unique, it follows that u = (I + η∂f)−1(x).

By this lemma, the proximal point update rule can be written as

xt+1 = proxηf (xt) = (I + η∂f)−1(xt).

This is equivalent to xt = (I + η∂f)(xt+1) = xt+1 + η∇f(xt+1), which is

xt+1 = xt − η∇f(xt+1).

In contrast to gradient descent that proceeds with xt+1 = xt − η∇f(xt), we use the gradient at
xt+1.

3 Lagrangian Duality

We consider problems of the following structure.

minimize f(x)

subject to gi(x) ≤ 0 for i = 1, . . . ,m

hj(x) = 0 for j = 1, . . . , ℓ.

(16.1)

We consider the most general setting for which we do not impose the condition that the objective
and constraint functions are convex. We may define vector-valued functions g : Rd → Rm and
h : Rd → Rℓ such that

• g(x) = (g1(x), . . . , gm(x))⊤,

• h(x) = (h1(x), . . . , hℓ(x))
⊤.

Then (16.1) can be written as

minimize f(x)

subject to g(x) ≤ 0

h(x) = 0.

(16.2)
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3.1 Lagrangian Dual Problem

The Lagrangian function of (16.1) is given by

L(x, λ, µ) = f(x) + λ⊤g(x) + µ⊤h(x)

= f(x) +
m∑
i=1

λigi(x) +
ℓ∑

j=1

µjhj(x).

When the objective function f is convex, constraint functions g1, . . . , gm are convex, constraint
functions h1, . . . , hℓ are affine, and the multiplier λ ≥ 0, the Lagrangian function is convex in x for
any fixed λ and µ. Moreover, the Lagrangian function is affine in λ and µ for any fixed x.

The Lagrangian dual function of (16.1) is

q(λ, µ) = inf
x
L(x, λ, µ) = inf

x

{
f(x) + λ⊤g(x) + µ⊤h(x)

}
.

Notice that the Lagrangian dual function is concave in (λ, µ), regardless of f , g1, . . . , gm, and
h1, . . . , hℓ. This is because L(x, λ, µ) is affine in λ and µ for any fixed x, and q(λ, µ) is a point-wise
minimum of affine functions.

Proposition 16.2. Let x be a feasible solution to (16.1), and λ ≥ 0. Then

f(x) ≥ q(λ, µ).

Proof. Since x is feasible, gi(x) ≤ 0 for i = 1, . . . ,m and hj(x) = 0 for j = 1, . . . , ℓ. Then for any
λ ≥ 0, we have

m∑
i=1

λigi(x) +

ℓ∑
j=1

µjhj(x) ≤ 0.

This implies that
f(x) ≥ L(x, λ, µ).

Note that
q(λ, µ) = inf

x
L(x, λ, µ) ≤ L(x, λ, µ).

Therefore, f(x) ≥ q(λ, µ).

By Proposition 16.2, if (16.1) is unbounded below, the Lagrangian dual function q(λ, µ) = −∞ for
any λ ≥ 0.

With the Lagrangian dual function, we can provide a lower bound on the problem (16.1). The
Lagrangian dual problem is defined as

maximize q(λ, µ)

subject to λ ≥ 0.
(16.3)

We often call (16.1) as primal and (16.3) as the associated (Lagrangian) dual. The following result
states that the optimal value of the primal is lower bounded by the optimal value of the dual.

Theorem 16.3 (Weak duality). Consider the problem (16.1) and the associated Lagrangian dual
problem (16.3). Then the following statement holds.

min
x∈C

f(x) ≥ max
λ≥0

q(λ, µ)

where C = {x : gi(x) ≤ 0 for i = 1, . . . ,m, hj(x) = 0 for j = 1, . . . , ℓ}.
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Proof. By proposition 16.2, we know that f(x) ≥ q(λ, µ) for any x ∈ C and λ ≥ 0. Then taking
the minimum of f(x) over x ∈ C, it follows that minx∈C f(x) ≥ q(λ, µ). Then taking the maximum
of q(λ, µ) over λ ≥ 0, we obtain the desired inequality.

Theorem 16.3 holds regardless of whether the objective and constraint functions are convex or not.
Then our next question is whether the equality holds. To answer this, we define the notion of
Slater’s condition.

Definition 16.4 (Slater’s condition). Suppose that g1, . . . , gk are affine and gk+1, . . . , gm are convex
functions that are not affine. Then we say that the problem (16.1) satisfies Slater’s condition if
there exists a solution x̄ such that

gi(x̄) ≤ 0 for i = 1, . . . , k, gi(x̄) < 0 for i = k + 1, . . . ,m, hj(x̄) = 0 for j = 1, . . . , ℓ.

If we assume that the objective f is convex and the constraint functions satisfy Slater’s condition,
then the inequality given in Theorem 16.3 holds with equality.

Theorem 16.5 (Strong duality). Consider the primal problem (16.1) and the associated Lagrangian
dual problem (16.3). Assume that the objective function f and the constraint functions g1, . . . , gm
are convex, and h1, . . . , hℓ are affine. If the primal problem (16.1) has a finite optimal value and
Slater’s condition, given in Definition 16.7, is satisfied, then there exist λ∗ ≥ 0 and µ∗ such that

min
x∈C

f(x) = q(λ∗, µ∗) = max
λ≥0

q(λ, µ)

where C = {x : gi(x) ≤ 0 for i = 1, . . . ,m, hj(x) = 0 for j = 1, . . . , ℓ}.

3.2 Examples

Consider the following linear program in standard form.

minimize c⊤x

subject to Ax = b,

x ≥ 0.

(16.4)

Then the Lagrangian dual function is given by

q(λ, µ) = inf
x
L(x, λ, µ)

= inf
x

{
c⊤x− λ⊤x+ µ⊤(Ax− b)

}
= −b⊤µ+ inf

x

{
(c− λ+A⊤µ)⊤x

}
.

Note that infx
{
(c− λ+A⊤µ)⊤x

}
= −∞ unless c − λ + A⊤µ = 0. Hence, to maximize the

Lagrangian dual function q(λ, µ), it is sufficient to consider (λ, µ) satisfying c − λ + A⊤µ = 0.
Therefore, the associated Lagrangian dual problem is equivalent to

maximize − b⊤µ

subject to c− λ+A⊤µ = 0,

λ ≥ 0.

(16.5)
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In fact, we can eliminate the variable from the constraints c+A⊤µ ≥ λ and λ ≥ 0, and they can be
equivalently written as c+A⊤µ ≥ 0. Moreover, the variables µ are unrestricted, so we can replace
µ by −µ. Then (16.5) is equivalent to

maximize b⊤µ

subject to A⊤µ ≤ c,
(16.6)

which is the dual linear program for (16.4).

Next we consider the following quadratic program.

minimize
1

2
x⊤Qx+ p⊤x

subject to Ax = b
(16.7)

where Q is positive definite and thus is invertible. The corresponding Lagrangian function is given
by

L(x, µ) = 1

2
x⊤Qx+ p⊤x+ µ⊤(Ax− b)

= −b⊤µ+

(
1

2
x⊤Qx+ (p+A⊤µ)⊤x

)
.

Then
∇xL(x, µ) = Qx+ (p+A⊤µ),

and therefore, ∇xL(x, µ) = 0 if and only if x = −Q−1(p + A⊤µ). This in turn implies that the
Lagrangian dual function is given by

q(µ) = inf
x
L(x, µ)

= L
(
−Q−1(p+A⊤µ), µ

)
= −b⊤µ− 1

2
(p+A⊤µ)⊤Q−1(p+A⊤µ)

= −1

2
µ⊤AQ−1A⊤µ− (b+AQ−1p)⊤µ− 1

2
p⊤p.

Hence, the Lagrangian dual problem is

max
µ

{
−1

2
µ⊤AQ−1A⊤µ− (b+AQ−1p)⊤µ

}
.

3.3 Lagrangian dual for conic programming

Consider the following conic programming problem

minimize f(x)

subject to gi(x) ≤Ki 0 for i = 1, . . . ,m

hj(x) = 0 for j = 1, . . . , ℓ

(16.8)

where K1, . . . ,Km are proper cones. Remember that gi(x) ≤Ki 0 means −gi(x) ∈ Ki. Moreover,
recall that the dual cone of a cone K is given by

K∗ = {y : y⊤x ≥ 0 ∀x ∈ K}.
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As we picked a nonnegative multiplier λ ≥ 0 to define the Lagrangian function, we pick a multiplier
λ from the dual cone K∗. The Lagrangian function of (16.8) is given by

L(x, λ, µ) = f(x) +

m∑
i=1

λ⊤
i gi(x) +

ℓ∑
j=1

µjhj(x)

where λi ∈ K∗
i is now a vector from the dual cone of Ki for each i. Then the Lagrangian dual

function is similarly defined as q(λ, µ) = infx L(x, λ, µ). The Lagrangian dual problem is given by

maximize q(λ, µ)

subject to λi ≥K∗
i
0 for i = 1, . . . ,m.

(16.9)

As an example, we consider the following semidefinite program.

minimize c⊤x

subject to
d∑

i=1

xiAi ≥Sm
+

B
(16.10)

where Sm
+ denotes the PSD cone containing all m × m PSD matrices. We learned that the PSD

cone is self-dual, so the dual of Sm
+ is itself. Let Y ∈ Sm

+ , and consider the associated Lagrangian
dual function.

q(Y ) = inf
x
L(x, Y ) = inf

x

{
c⊤x−

d∑
i=1

xitr(Y
⊤Ai) + tr(Y ⊤B)

}
.

Note that the Lagrangian dual function q(Y ) has a finite value if and only if ci = tr(Y ⊤Ai) for
every i ∈ [d]. Then the Lagrangian dual problem is given by

maximize tr(Y ⊤B)

subject to tr(Y ⊤Ai) = ci for i = 1, . . . , d.

Y ∈ Sm
+

(16.11)

4 Karush-Kuhn-Tucker conditions

Remember that x∗ is an optimal solution to

min
x∈C

f(x)

where C is a convex set and f is differentiable if and only if

∇f(x∗)⊤(x− x∗) ≥ 0 ∀x ∈ C.

However, the structure of C may be arbitrary, which makes the condition difficult to verify. In this
section, we present another way of verifying optimality. Namely, Karu-Kuhn-Tucker conditions,
often referred to as KKT conditions.
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4.1 Linear constraints

We consider problems of the following structure.

minimize f(x)

subject to Ax ≤ b

Cx = d

(16.12)

where

• A ∈ Rm×d and b ∈ Rm,

• C ∈ Rℓ×d and d ∈ Rℓ.

Theorem 16.6 (KKT conditions for linearly constrained problems). The linearly constrained prob-
lem as in (16.12) satisfies the following.

1. (Necessity) If x∗ is a feasible solution to (16.12) and f(x∗) is a local minimum, then there
exist λ∗ ∈ Rm

+ and µ∗ ∈ Rℓ such that

∇f(x∗)⊤ + λ∗⊤A+ µ∗⊤C = 0 & λ∗⊤(Ax− b) = 0. (⋆)

2. (Sufficiency) If f is convex, x∗ is a feasible solution to (16.12), and there exist λ∗ ∈ Rm
+ and

µ∗ ∈ Rℓ satisfying (⋆), then x∗ is an optimal solution to (16.12).

4.2 General convex constraints

We consider problems of the following structure.

minimize f(x)

subject to gi(x) ≤ 0 for i = 1, . . . ,m

hj(x) = 0 for j = 1, . . . , ℓ

(16.13)

where

• f is convex,

• g1, . . . , gm are convex,

• h1, . . . , hℓ are affine.

Definition 16.7 (Slater’s condition). Suppose that g1, . . . , gk are affine and gk+1, . . . , gm are convex
functions that are not affine. Then we say that the problem (16.13) satisfies Slater’s condition if
there exists a solution x̄ such that

gi(x̄) ≤ 0 for i = 1, . . . , k, gi(x̄) < 0 for i = k + 1, . . . ,m, hj(x̄) = 0 for j = 1, . . . , ℓ.

Theorem 16.8 (KKT conditions for convex constrained problems). The convex programming prob-
lem as in (16.13) satisfies the following.
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1. (Necessity) Assume that Slater’s condition is satisfied. If x∗ is a feasible optimal solution
to (16.13), then there exist λ∗ ∈ Rm

+ and µ∗ ∈ Rℓ such that

∇f(x∗) +
m∑
i=1

λ∗
i∇gi(x

∗) +
ℓ∑

j=1

µ∗
j∇hj(x

∗) = 0 & λ∗
i gi(x

∗) = 0 for all i = 1, . . . ,m. (⋆⋆)

2. (Sufficiency) If x∗ is a feasible solution to (16.13) and there exist λ∗ ∈ Rm
+ and µ∗ ∈ Rℓ

satisfying (⋆⋆), then x∗ is an optimal solution to (16.13).
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