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1 Outline

In this lecture, we study

• regularization for linear regression,

• lasso: least absolute shrinkage and selection operator,

• ISTA and FISTA for LASSO,

• accelerated proximal gradient descent.

2 Linear Regression

In this section, we consider linear regression in the context of smoothness and strong convexity.
We assume that the relationship between the vector x ∈ Rd of features and the response variable
y ∈ R is modeled using a linear equation given by

y = θ⊤truex+ ϵ

where:

• θtrue ∈ Rd is the coefficient vector,

• ϵ ∈ R is the noise term representing unexplained variation.

We infer the true coefficient vector θtrue using the method of least squares, which minimizes the
average of squared differences between the observed and predicted values of y. Namely, given a set
of n data (x1, y1), . . . , (xn, yn), we solve

min
θ

1

n

n∑
i=1

(
yi − θ⊤xi

)2
= min

θ

1

n
∥Y −Xθ∥22. (15.1)

Here, Y denotes the vector whose components are y1, . . . , yn, and X denotes the matrix whose rows
are x⊤1 , . . . , x

⊤
n . Note that

f(θ) :=
1

n
∥Y −Xθ∥22 =

1

n
θ⊤X⊤Xθ − 2

n
Y ⊤Xθ +

1

n
Y ⊤Y.

Since X⊤X is positive semidefinite, it follows that the MSE loss f(θ) is convex. Moreover, f(θ) is
α-strongly convex and β-smooth in the ℓ2-norm with

α =
1

n
λmin(X

⊤X) and β =
1

n
λmax(X

⊤X)

where λmin(X
⊤X) and λmax(X

⊤X) denote the minimum and maximum eigenvalues of X⊤X. As
long as X is a nonzero matrix, we have λmax(X

⊤X) > 0. However, we can have λmin(X
⊤X) = 0

when the rank of X⊤X is lower than the number of features d.
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Data-Rich Regime Recall that n is the number of data and d is the number of features. When
n ≥ d, then it is possible that X is of full column rank, in which case X⊤X is invertible. If X⊤X
is invertible, it is positive definite, and therefore, we have α = λmin(X

⊤X)/n > 0. In this case, the
MSE loss f(θ) is indeed strongly convex. Another Remark is that if X⊤X is invertible, then

θrichopt := argminθ
1

n
∥Y −Xθ∥22 = (X⊤X)−1X⊤y

because

∇f(θ) =
2

n
X⊤(Xθ − y).

Data-Poor Regime When n < d, then the rank of X is less than d, which means that X⊤X is
not of full rank and thus X⊤X is not invertible. In this case, we have α = λmin(X

⊤X)/n = 0, and
therefore, the MSE loss f(θ) is not strongly convex. When X⊤X is not invertible, we have

θpooropt := argminθ
1

n
∥Y −Xθ∥22 = (X⊤X)†X⊤y

where (X⊤X)† denotes the Moore-Penrose pseudo-inverse of X⊤X.

2.1 Gradient Descent for Minimizing the MSE Loss

We generated a random instance with 75 feature variables and 100 data samples. To consider a
data-poor regime, we randomly selected 30 samples from the data set. Recall that θtrue denotes
the true coefficient vector in the linear model y = θ⊤truex+ ϵ.

The following figures map loss convergence patterns under the data-rich and data-poor regimes.
The figures show that gradient descent quickly minimizes the MSE loss under both regimes.

Figure 15.1: Loss convergence patterns under the data-rich regime (Left) and the data-poor regime
(Right)

Let us verify whether gradient descent returns solutions that converge to the optimal model min-
imizing the MSE loss. Recall that θrichopt = (X⊤X)−1X⊤y is the model minimizing the MSE loss

under the data-rich regime while θpooropt = (X⊤X)†X⊤y is the model minimizing the MSE loss under
the data-poor regime. Figure 15.2 reports the distances between models θ generated by gradient
descent and the optimal model under each regime. Here, the purple line shows the squared norm of
θrichopt and that of θpooropt , given by ∥θrichopt ∥22 and ∥θpooropt ∥22, respectively. The red line depicts ∥θ−θpooropt ∥22
under the data-poor regime, while the blue one shows ∥θ − θrichopt ∥22 under the data-rich regime.
Figure 15.2 shows that the solution deduced by gradient descent under the data-rich regime indeed
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Figure 15.2: Convergence to the optimal model under the data-rich regime (Left) and the data-poor
regime (Right)

seems to converge to the optimal vector minimizing the MSE loss, but that under the data-poor
regime does not. This is because the MSE loss is no longer strongly convex under the data-poor
regime.

In Figure 15.3, we report the distances between each model θ generated by gradient descent and
the true coefficient vector θtrue. Here, the green line shows the squared norm of θtrue, given by

Figure 15.3: Convergence to the true model

∥θtrue∥22. The red line depicts ∥θ − θtrue∥22 under the data-poor regime, while the blue one shows
∥θ − θtrue∥22 under the data-rich regime. Figure 15.3 shows that the solution deduced by gradient
descent under the data-rich regime indeed seems to converge to the actual true coefficient vector,
but that under the data-poor regime does not.

2.2 ℓ2-Regularized Least Squares

We discussed that the MSE loss under the data-poor regime is not strongly convex. In practice, it
is often desirable to add an ℓ2-regularization term, which makes the resulting loss function strongly
convex. To be more precise, we consider

min
θ

1

n
∥Y −Xθ∥22 + λ∥θ∥22 (15.2)
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for some positive λ. Note that the regularized loss is α-strongly convex and β-smooth in the ℓ2-norm
with

α =
1

n
λmin(X

⊤X) + λ and β =
1

n
λmax(X

⊤X) + λ.

Hence, as long as λ > 0, the regularized loss is strongly convex. As X⊤X + αI is positive definite,
the model minimizing the regularized loss is given by

θopt := argminθ
1

n
∥Y −Xθ∥22 + λ∥θ∥22 = (X⊤X + λI)−1X⊤y.

In Figure 15.4, we report the distances between each model θ generated based on the regularized
loss and the true coefficient vector θtrue. Here, the green line shows the squared norm of θtrue, given

Figure 15.4: Convergence to the true model under regularization

by ∥θtrue∥22. The orange line depicts ∥θ − θtrue∥22 for the regularized loss, while the red one shows
∥θ − θtrue∥22 for the original MSE loss. We see that

Let us also check convergence to the optimal model minimizing the regularized loss. Recall that
θopt = (X⊤X+λI)−1X⊤y is the model minimizing the regularized loss. Here, the purple line shows

Figure 15.5: Convergence to the optimal model under regularization

the squared norm of θopt given by ∥θopt∥22. The orange line depicts ∥θ − θopt∥22 for the regularized
loss, while the red one shows ∥θ − θopt∥22 for the original MSE loss.
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3 LASSO: Least Absolute Shrinkage and Selection Operator

Recall the formulation of LASSO, given by

min
θ

1

n
∥y −Xθ∥22 + λ∥θ∥1.

Here, the objective function is non-differentiable because of the ℓ1-regularization term λ∥θ∥1, and
therefore, it is non-smooth. On the other hand, the objective is convex, and we have a character-
ization of the subdifferential of ∥θ∥1, so we can simply apply the subgradient method. To bound
the additive error by ϵ, the subgradient method requires O(1/ϵ2) iterations.

As discussed in the last lecture, we know that the first part is smooth, and the other part is
something whose subdifferential is well understood. Hence, we may apply proximal gradient descent
with h(θ) = λ∥θ∥1 whose associated prox operator is given by

proxηλ∥·∥1(θ) =

max {0, |θi| − ηλ}︸ ︷︷ ︸
shirinkage operator

·sign(θi)


i∈[d]

The proximal gradient algorithm applies to this composite problem proceeds with the following
update rule.

θt+1 = proxηh(θt − η∇g(θt)).

Proximal Gradient Descent applied to LASSO is referred to as Iterative Shrinkage-Thresholding
Algorithm (ISTA).

4 Nesterov’s Acceleration and FISTA

We observed that proximal gradient descent achieves a convergence rate of O(1/T ), and therefore,
ISTA solves LASSO with a convergence rate of O(1/T ). In fact, we may deduce a faster convergence
rate based on Nesterov’s acceleration. We mentioned that Nesterov’s accelerated gradient descent
guarantees a convergence rate of O(1/T 2) for smooth convex minimization. We will show that an
accelerated version of proximal gradient descent achives a rate of O(1/T 2) for the composite convex
minimization where g is smooth and convex.

Recall that proximal gradient descent for minimizing g + h where g is β-smooth and convex and h
is convex follows the update rule of

xt+1 = proxh/β

(
xt −

1

β
∇g(xt)

)
from a given point xt. Instead of applying the gradient descent update to xt, we move a bit further
from xt along the momentum direction that we took from xt−1 to xt. Let γt > 0 be a weight, and

yt = xt + γt(xt − xt−1).

Then we apply the primal gradient descent update on yt to obtain the next point xt+1, as follows.

xt+1 = proxh/β

(
yt −

1

β
∇g(yt)

)
.

Algorithm 1 summarizes the accelerated version of proximal gradient descent that we just explained.

To provide a convergence result of the accelerated proximal gradient descent method, we need the
following lemma.
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Algorithm 1 Accelerated Proximal Gradient Descent

Initialize x1 ∈ Rd.
Set x0 = x1.
for t = 1, . . . , T do

yt = xt + γt(xt − xt−1) for some γt > 0.

xt+1 = proxh/β

(
yt − 1

β∇g(yt)
)
.

end for
Return xT+1.

Lemma 15.1. Let u, v ∈ Rd. Then for all z ∈ Rd,

1

η
(proxηh(x)− x)⊤(z − proxηh(x)) + h(z) ≥ h(proxηh(x)).

Proof. Note that

proxηh(x) = argmin
z∈Rd

{
h(z) +

1

2η
∥x− z∥22

}
.

By the optimality condition, it follows that for any z ∈ Rd and g ∈ ∂h(proxηh(x)),(
g +

1

η

(
proxηh(x)− x

))⊤
(z − proxηh(x)) ≥ 0.

This implies that

1

η
(proxηh(x)− x)⊤(z − proxηh(x)) + g⊤(z − proxηh(x)) ≥ 0.

Here, since h is convex, we have

h(z) ≥ h(proxηh(x)) + g⊤(z − proxηh(x)).

Adding the two inequalities, we prove the desired bound of this lemma.

Theorem 15.2. Let f = g + h where g is a β-smooth convex function in the ℓ2 norm and h is
convex. We set η and γt as

η =
1

β
, γt =

t− 2

t+ 1
.

Then xT+1 returned by Accelerated Proximal Gradient Descent (Algorithm 1) satisfies

f(xT+1)− f(x∗) ≤ 2β

(T + 1)2
∥x1 − x∗∥22

where x∗ is an optimal solution to minx∈Rd f(x).

Proof. Note that Algorithm 1 is equivalent to

yt = (1− λt)xt + λtvt

xt+1 = proxh/β

(
yt −

1

β
∇g(yt)

)
vt+1 = xt +

1

λt
(xt+1 − xt)
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where

λt =
2

t+ 1
.

This is because yt = xt + λt(vt − xt) and

λt(vt − xt) = λt

((
1

λt−1
− 1

)
xt +

(
1− 1

λt−1

)
xt−1

)
=

λt(1− λt−1)

λt−1
(xt − xt−1) = γt(xt − xt−1).

Moreover, we have λ1 = 1, and for t ≥ 2,

1− λt

λ2
t

≤ 1

λ2
t−1

.

First, as g is β-smooth,

g(xt+1) ≤ g(yt) +∇g(yt)
⊤(xt+1 − yt) +

β

2
∥xt+1 − yt∥22.

Next, Lemma 15.1 implies that for any z ∈ Rd,

h(xt+1) ≤ h(z) + β

(
xt+1 − yt +

1

β
∇g(yt)

)⊤
(z − xt+1)

= h(z) +∇g(yt)
⊤(z − xt+1) + β (xt+1 − yt)

⊤ (z − xt+1).

Adding these two inequalities, we deduce that

f(xt+1) ≤ h(z) + g(yt) +∇g(yt)
⊤(z − yt) + β (xt+1 − yt)

⊤ (z − xt+1) +
β

2
∥xt+1 − yt∥22

≤ f(z) + β (xt+1 − yt)
⊤ (z − xt+1) +

β

2
∥xt+1 − yt∥22

where the second inequality follows from convexity of g. By setting z = x∗ and z = xt, we have

f(xt+1)− f(x∗) ≤ β (xt+1 − yt)
⊤ (x∗ − xt+1) +

β

2
∥xt+1 − yt∥22

f(xt+1)− f(xt) ≤ β (xt+1 − yt)
⊤ (xt − xt+1) +

β

2
∥xt+1 − yt∥22.

Summing up the first inequality multiplied by λt and the second one multiplied by (1−λt), we get

f(xt+1)− f(x∗)− (1− λt)(f(xt)− f(x∗))

≤ β (xt+1 − yt)
⊤ (λtx

∗ + (1− λt)xt − xt+1) +
β

2
∥xt+1 − yt∥22

=
β

2
(xt+1 − yt)

⊤(2λtx
∗ + 2(1− λt)xt − xt+1 − yt)

=
β

2
∥yt − (1− λt)xt − λtx

∗∥22 −
β

2
∥xt+1 − (1− λt)xt − λtx

∗∥22

=
βλ2

t

2
∥vt − x∗∥22 −

βλ2
t

2
∥vt+1 − x∗∥22.
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This implies that

1

λ2
t

(f(xt+1)− f(x∗)) +
β

2
∥vt+1 − x∗∥22 ≤

1− λt

λ2
t

(f(xt)− f(x∗)) +
β

2
∥vt − x∗∥22

≤ 1

λ2
t−1

(f(xt)− f(x∗)) +
β

2
∥vt − x∗∥22

...

≤ 1

λ2
1

(f(x2)− f(x∗)) +
β

2
∥v2 − x∗∥22

≤ 1− λ1

λ2
1

(f(x1)− f(x∗)) +
β

2
∥v1 − x∗∥22

=
β

2
∥v1 − x∗∥22

=
β

2
∥x1 − x∗∥22.

Therefore, it follows that

f(xT+1)− f(x∗) ≤
βλ2

T

2
∥x1 − x∗∥22 =

2β

(T + 1)2
∥x1 − x∗∥22,

as required.

Hence, the convergence rate is O(1/T 2), which matches the oracle lower bound. The number of
required iterations to bound the error by ϵ is O(1/

√
ϵ).

FISTA stands for Fast ISTA, that is an accelerated version of ISTA. Basically, FISTA is the
accelerated proximal gradient descent method applied to LASSO. ISTA requires O(1/ϵ) iterations,
while FISTA needs O(1/

√
ϵ) iterations to converge to an ϵ-approximate solution.

We generated a random instance with 300 feature variables and 100 data samples. The figure

Figure 15.6: Comparing the subgradient method, ISTA, and FISTA for LASSO
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compares the subgradient method, ISTA, and FISTA for the random LASSO instance. We can
see that FISTA has the fastest rate of convergence while ISTA is also faster than the subgradient
method.
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