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1 Outline

In this lecture, we study

• Proximal gradient descent.

• Convergence of proximal gradient descent.

2 Proximal gradient descent

Recall the formulation of LASSO, given by

min
β

1

n
∥y −Xβ∥22 + λ∥β∥1.

Here, the objective function is non-differentiable because of the ℓ1-regularization term λ∥β∥1, and
therefore, it is non-smooth. On the other hand, the objective is convex, and we have a character-
ization of the subdifferential of ∥β∥1, so we can simply apply the subgradient method. To bound
the additive error by ϵ, the subgradient method requires O(1/ϵ2) iterations.

If you take a closer look at the objective, it consists of two part. One part is smooth, and the other
part is something whose subdifferential is well understood. Can we use this structure to obtain a
better algorithm? The main subject of this section is developing an algorithm that converges to an
ϵ-approximate solution after O(1/ϵ) iterations.

2.1 Projection and proximal operator

We studied the projected gradient descent method, where at each step, we take a projection to the
constraint set. When the constraint set is given by C, the projection operator is given by

ProjC(x) = argmin
u∈C

1

2
∥u− x∥22 = argmin

u∈Rd

{
IC(u) +

1

2
∥u− x∥22

}
where IC(u) is the indicator function of C. This definition is proper as there is a unique minimizer
for the optimization problem. Hence, the projection operator is defined by the indicator function
and the proximity term (1/2)∥u− x∥22. The proximal operator is a generalization of the projection
operator replacing the indicator function by other general functions.

The proximal operator with respect to a convex function h is defined as follows.

Proxh(x) = argmin
u∈Rd

{
h(u) +

1

2
∥u− x∥22

}
.

Again the definition is proper because the objective of the optimization problem is strongly convex.
Hence, for any η > 0,

Proxηh(x) = argmin
u∈Rd

{
h(u) +

1

2η
∥u− x∥22

}
.
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As projected gradient descent proceeds with the update rule

xt+1 = ProjC {xt − η∇f(xt)} ,

we can defined the proximal gradient method with the update rule

xt+1 = Proxηh(xt − η∇f(xt)).

In particular, when we take the indicator function IC for h, the proximal gradient method reduces
to the projeced gradient descent method.

Lemma 14.1. u = proxηh(x) if and only if x− u ∈ η∂h(u).

Proof. Note that u = proxηh(x) means that u minimizes h(u) + (1/2η)∥u− x∥22. By the optimality
condition, it is equivalent to 0 ∈ ∂h(u)+{(1/η)(u− x)}, and this is equivalent to x−u ∈ η∂h(u).

2.2 Example: ℓ1 regularization

Consider h(x) = ∥x∥1. Then

proxηh(x) = argmin
u∈Rd

{
∥u∥1 +

1

2η
∥u− x∥22

}
.

Let u = proxηh(x). Then, by Lemma 14.1,

x− u ∈ η∂∥u∥1.

Recall that g ∈ ∂∥u∥1 if and only if

gi =

{
sign(ui), if ui ̸= 0,

a value in [−1, 1], if ui = 0.

Based on this, we can argue that x− u ∈ η∂∥u∥1 if and only if

ui =


xi − η, if xi ≥ η,

0, if −η ≤ xi ≤ η.

xi + η, if xi ≤ −η.

Moreover, x− u ∈ η∂∥u∥1 if and only if

ui = max{0, |xi| − η} · sign(xi).

For example,
proxh((3, 1,−2)⊤) = (2, 0,−1)⊤.

Note that when h = ∥x∥1, the corresponding proximal operator “shrinks” the vector. For this
reason, the operator is called the self-thresholding operator or the shrinkage operator.

2.3 Example: quadratic function

Consider h(x) = (1/2)x⊤Ax+ b⊤x+ c where A is positive semidefinite. Then

proxηh(x) = argmin
u∈Rd

{
1

2
u⊤Au+ b⊤u+ c+

1

2η
∥u− x∥22

}
.

Setting v = proxηh(x), it follows from the optimality condition that

0 = Av + b+
1

η
(v − x).

Therefore,
proxηh(x) = v = (I + ηA)−1(x− ηb).
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3 Convergence of proximal gradient descent

We consider the following composite convex optimization problem.

min
x∈Rd

f(x) = g(x) + h(x)

where we assume that g is a smooth convex function and h is convex. For constrained minimixation,
we take h(x) = IC(x) where C is the convex domain. Then the associated prox operator is equivalent
to the projection operator. For LASSO, we take h(β) = λ∥β∥1 whose associated prox operator is
given by

proxηλ∥·∥1(β) =

max {0, |βi| − ηλ}︸ ︷︷ ︸
shirinkage operator

·sign(βi)


i∈[d]

The proximal gradient algorithm applies to this composite problem proceeds with the following
update rule.

xt+1 = proxηh(xt − η∇g(xt)).

Algorithm 1 Proximal gradient descent

Initialize x1 ∈ C.
for t = 1, . . . , T do

Update xt+1 = proxηh(xt − (1/β)∇g(xt)) where β is the smoothness parameter of g.
end for
Return xT+1.

The gradient mapping is defined as

Gη(x) =
1

η

(
x− proxηh(x− η∇g(x))

)
.

Here, −ηGη(x) is equal to proxηh(x − η∇g(x)) − x, which is the difference between the current
point x and the one obtained after the proximal gradient update applied to x. Then

xt+1 = xt − ηGη(xt).

Note that when h is the indicator function of Rd, the gradient mapping is simply ∇g(x). Hence,
the gradient mapping operator is similar in spirit to the gradient operator. In fact, we can derive
the following optimality condition in terms of the gradient mapping.

Lemma 14.2. Gη(x̂) = 0 if and only if x̂ ∈ argminx∈Rd g(x) + h(x).

Proof. By the optimality condition, x̂ minimizes g + h if and only if

0 ∈ {∇g(x̂)}+ ∂h(x̂) ↔ −∇g(x̂) ∈ ∂h(x̂)

↔ (x̂− η∇g(x̂))− x̂ ∈ η∂h(x̂)

↔ x̂ = proxηh(x̂− η∇g(x̂))

Note that x̂ = proxηh(x̂− η∇g(x̂)) is equivalent to

Gη(x̂) =
1

η

(
x̂− proxηh(x̂− η∇g(x̂))

)
= 0

Therefore, x̂ is a minimizer of g + h if and only if Gη(x̂) = 0.
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To analyze the convergence of proximal gradient descent, we need the following lemma.

Lemma 14.3. Consider f = g+ h where g is β-smooth and α-strongly convex in the ℓ2 norm and
h is convex. Assume that β > 0 and α ≥ 0. Then for any x, z,

f

(
x− 1

β
G1/β(x)

)
≤ f(z) +G1/β(x)

⊤(x− z)− 1

2β
∥G1/β(x)∥22 −

α

2
∥x− z∥22.

Proof. As f = g + h, we upper bound g and h separately, thereby bounding f . Note that

g

(
x− 1

β
G1/β(x)

)
≤ g(x) +∇g(x)⊤

((
x− 1

β
G1/β(x)

)
− x

)
+

β

2

∥∥∥∥(x− 1

β
G1/β(x)

)
− x

∥∥∥∥2
2

= g(x)− 1

β
∇g(x)⊤G1/β(x) +

1

2β

∥∥G1/β(x)
∥∥2
2

≤ g(z)−∇g(x)⊤(z − x)− α

2
∥z − x∥22 −

1

β
∇g(x)⊤G1/β(x) +

1

2β

∥∥G1/β(x)
∥∥2
2

(14.1)

where the first inequality is due to the β-smoothness of g and the second inequality is due to the
α-strong convexity of g.

Next we consider the h part. Note that

u = prox(1/β)h(x− (1/β)∇g(x)) = x− 1

β
G1/β(x)

if and only if (
x− 1

β
∇g(x)

)
−
(
x− 1

β
G1/β(x)

)
∈ 1

β
∂h

(
x− 1

β
G1/β(x)

)
.

Multiplying each side by β, it is equivalent to

G1/β(x)−∇g(x) ∈ ∂h

(
x− 1

β
G1/β(x)

)
.

Then it follows from the convexity of h that

h

(
x− 1

β
G1/β(x)

)
≤ h(z)−

(
G1/β(x)−∇g(x)

)⊤(
z −

(
x− 1

β
G1/β(x)

))
. (14.2)

Combining (14.1) and (14.2), we get

f

(
x− 1

β
G1/β(x)

)
≤ f(z)−G1/β(x)

⊤(z − x)− 1

2β
∥G1/β(x)∥22 −

α

2
∥x− z∥22,

as required.

One would find that Lemma 14.3 is analogous to the lemma stating that the gradient descent with
step size 1/β always improves for a β-smooth function. In fact, plugging in z = x, we obtain

f

(
x− 1

β
G1/β(x)

)
≤ f(x)− 1

2β
∥G1/β(x)∥22. (14.3)
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The next step we took for smooth functions was to use f(x) ≤ f(x∗)−∇f(x)⊤(x∗ − x). However,
as ∇f(x) ̸= G1/β(x), we cannot directly use (14.3). Instead, we start from Lemma 14.3 by plugging
in z = x∗ and x = xt. Then

f(xt+1) ≤ f(x∗) +G1/β(x)
⊤(xt − x∗)− 1

2β
∥G1/β(xt)∥22 −

α

2
∥xt − x∗∥22

= f(x∗) +
β

2

(
∥xt − x∗∥22 −

∥∥∥∥xt − x∗ − 1

β
G1/β(xt)

∥∥∥∥2
2

)
− α

2
∥xt − x∗∥22

= f(x∗) +
β

2

(
∥xt − x∗∥22 − ∥xt+1 − x∗∥22

)
− α

2
∥xt − x∗∥22.

This implies that

f(xt+1)− f(x∗) ≤ β

2

(
∥xt − x∗∥22 − ∥xt+1 − x∗∥22

)
− α

2
∥xt − x∗∥22. (14.4)

Theorem 14.4. Let f = g + h where g is a β-smooth convex function in the ℓ2 norm and h is
convex. Then xT+1 returned by Proximal Gradient Descent (Algorithm 1) satisfies

f(xT+1)− f(x∗) ≤ β∥x1 − x∗∥22
2

.

Proof. First, sum up (14.4) for t = 1, . . . , T and then divide each side by T . Then we obtain

1

T

T∑
t=1

f(xt+1)− f(x∗) ≤ β

2

(
∥x1 − x∗∥22 − ∥xT+1 − x∗∥22

)
− α

2

T∑
t=1

∥xt − x∗∥22.

By (14.3), we know that f(xT+1) ≤ f(xT ) ≤ · · · ≤ f(x2). Moreover, ∥xt − x∗∥2 ≥ 0. Thus
the left-hand side is greater than or equal to f(xT+1) − f(x∗) and the right-hand side is at most
(β/2)∥x1 − x∗∥22.

Furthermore, when α is strictly positive, in which case, g is strongly convex, we deduce the following
convergence result.

Theorem 14.5. Let f = g + h where g is β-smooth and α-strongly convex in the ℓ2 norm and h
is convex. Then xT+1 returned by Proximal Gradient Descent (Algorithm 1) satisfies

∥xT+1 − x∗∥22 ≤
(
1− α

β

)T

∥x1 − x∗∥22.

Proof. Note that the left-hand side of (14.4) is greater than or equal to 0, and so is the right-hand
side. Then it follows that

∥xt+1 − x∗∥22 ≤
(
1− α

β

)
∥xt − x∗∥22,

as required.
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