
IE 539: Convex Optimization KAIST, Fall 2024
Lecture #13: Projection-free method and Online convex optimization October 30, 2024
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

• Frank-Wolfe algorithm,

• Applications in LASSO and matrix completion,

• Introduction to online convex optimization.

2 Stochastic gradient descent

Let us consider convex optimization stated as

min
x∈C

f(x).

If we have an access to its gradient or one of its subgradients, then we can apply gradient descent or
the subgradient method. However, depending on situations, it may not be realistic to assume that
we have an oracle that provides exact gradients. For example, we have just considered the stochastic
optimization setting where f is given by f(x) = Eξ∼P [h(x, ξ)], the expectation of a random function.
Here, ∇f(x) = Eξ∼P [∇h(x, ξ)], to compute which we need to know the distribution P in general.
Instead of computing the expectation exactly, what we did was to obtain a sample ξt so that we
may use ∇h(x, ξt) for each iteration t. Here ∇h(x, ξt) is an unbiased estimator of ∇f(x).

Another example is the mean squared error minimization problem for regression.

min
β

f(β) =
1

n

n∑
i=1

1

2
(yi − β⊤xi)

2

where (x1, y1), . . . , (xn, yn) are the given data. In fact, this setting is also a stochastic optimization
problem as we can define P as the empirical distribution over the n samples. To be more specific,

P ((x, y) = (xi, yi)) =
1

n
.

Then the gradient of f at β is given by

∇f(β) = E(x,y)∼P[∇h(β, (x, y))] = − 1

n

n∑
i=1

(yi − β⊤xi)xi.

In this example, we know the precise description of the underlying distribution, from which we can
compute the exact gradient. Then, what is the problem? Here, to compute the gradient, we have
to go through all data points (x1, y1), . . . , (xn, yn), which may not be practical especially when the
number of data is large. For this scenario, a strategy is to obtain an estimation of the gradient.
We sample a data (xr, yr) from the data set uniformly at random and obtain

gr = −(yr − β⊤xr)xr.
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Here r is a random variable following the uniform distribution over {1, . . . , n}. Note that

E[gr] =
n∑

i=1

P(r = i) · gi =
n∑

i=1

1

n
· gi = − 2

n

n∑
i=1

(yi − β⊤xi)xi = ∇f(β).

Hence, gr is an unbiased estimator of gr. What we do next is to use gr to replace ∇f(β) when
running gradient descent. More generally, let g̃x be an unbiased estimator of the gradient of f at
x or the subgradient for f at x.

Algorithm 1 Stochastic gradient descent (SGD)

Initialize x1 ∈ C.
for t = 1, . . . , T do

Obtain an estimator ĝxt of some g ∈ ∂f(xt).
Update xt+1 = ProjC {xt − ηtĝxt} for a step size ηt > 0.

end for
Return (1/T )

∑T
t=1 xt.

2.1 Convergence of stochastic gradient descent

Assume that g̃x satisfies

E[ĝx] = g for some g ∈ ∂f(x), E
[
∥ĝx∥2

]
≤ L2.

Under this assumption, let us analyze the performance of stochastic gradient descent given by
Algorithm 1.

Theorem 13.1. Algorithm 1 with step sizes ηt = R/(L
√
t) satisfies

E

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ 3LR

2
√
T

where the expectation is taken over the randomness in gradient estimation and x∗ ∈ argminx∈C f(x).

Proof. Note that

E
[
∥xt+1 − x∗∥22 |xt

]
= E

[
∥ProjC(xt − ηtĝxt)− x∗∥22 |xt

]
≤ E

[
∥xt − ηtĝxt − x∗∥22 |xt

]
= ∥xt − x∗∥22 + η2tE

[
∥ĝxt∥

2
2 |xt

]
− 2ηtE [ĝxt |xt]

⊤ (xt − x∗)

= ∥xt − x∗∥22 + η2tE
[
∥ĝxt∥

2
2 |xt

]
− 2ηtg

⊤
t (xt − x∗)

≤ ∥xt − x∗∥22 + η2tE
[
∥ĝxt∥

2
2 |xt

]
− 2ηt(f(xt)− f(x∗)).

Then, based on the tower rule,

E
[
∥xt+1 − x∗∥22

]
≤ E

[
∥xt − x∗∥22

]
+ η2tE

[
∥ĝxt∥

2
2

]
− 2ηt(E [f(xt)]− f(x∗))

≤ E
[
∥xt − x∗∥22

]
+ η2tL

2 − 2ηt(E [f(xt)]− f(x∗)).
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Then it follows that

E [f(xt)]− f(x∗) ≤ 1

2ηt

(
E
[
∥xt − x∗∥22

]
− E

[
∥xt+1 − x∗∥22

])
+

ηt
2
L2.

Summing up this for t = 1, . . . , T and dividing each side by T , we obtain

1

T

T∑
t=1

E [f(xt)]− f(x∗) ≤ 1

T

T∑
t=1

E
[
∥xt − x∗∥22

]( 1

2ηt
− 1

2ηt−1

)
+

L2

2T

T∑
t=1

ηt

≤ R2

T

T∑
t=1

(
1

2ηt
− 1

2ηt−1

)
+

L2

2T

T∑
t=1

ηt

≤ LR

2
√
T

+
LR√
T
.

By convexity,

1

T

T∑
t=1

E [f(xt)] ≥ E

[
f

(
1

T

T∑
t=1

xt

)]
,

and therefore, the result follows.

2.2 Strongly convex functions

For strongly convex functions, we have the following convergence result.

Theorem 13.2. Assume the same conditions on ĝx and that f is α-strongly convex with respect
to the ℓ2 norm for some α > 0. Algorithm 1 with step sizes ηt = 2/(α(t+ 1)) satisfies

E

[
f

(
T∑
t=1

2t

T (T + 1)
xt

)]
− f(x∗) ≤ 2L2

α(T + 1)

where the expectation is taken over the randomness in gradient estimation and x∗ ∈ argminx∈C f(x).

Therefore, for Lipschitz continuous functions and functions that are stronngly convex and Lipschitz,
we recover the same convergence rate as the subgradient method.

2.3 No self-tuning property due to variance

For gradient descent, smoothness does make a difference due to the self-tuning property. For smooth
functions, the convergence rate is O(1/T ) (we also saw the accelerated method achieving O(1/T 2)
rate). For smooth and strongly convex functions, we obtained O(γT ) rate for some 0 < γ < 1. Is
it the case for SGD as well? The answer is no.

The crucial property of smooth functions which we relied on in the convergence analysis was
the self-tuning property. For a smooth function f , as we get close to an optimal solution x∗ ∈
argminx∈Rd f(x), the size of the gradient ∥∇f(x)∥2 gets smaller. However, even if f is smooth and
x goes to x∗, E

[
∥ĝx∥22

]
does not converge to 0.

Let us consider the mean squared error minimization problem given by

min
β

f(β) =
1

n

n∑
i=1

1

2
(yi − β⊤xi)

2.
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Here, f is smooth because

∥∇f(β1)−∇f(β2)∥2 =

∥∥∥∥∥ 1n
n∑

i=1

(β1 − β2)
⊤xixi

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

|(β1 − β2)
⊤xi| ∥xi∥2

≤ ∥β1 − β2∥2

(
1

n

n∑
i=1

∥xi∥22

)
≤ M2∥β1 − β2∥2

where maxi∈[n] ∥xi∥ = M .

Next take the optimal solution β∗ ∈ argminβ f(β) which satisfies ∇f(β∗) = 0. Then sample a data
point (xi, yi) to obtain an unbiased estimator

ĝβ∗ = (yi − x⊤i β
∗)(−xi).

Here, if the data point (xi, yi) is not on the line y = β⊤x and xi is nonzero, then ĝβ∗ ̸= 0.

2.4 Stochastic optimization

Stochastic optimization (SO) is an optimization problem of the following form.

minimize
x∈C

Eξ∼P [h(x, ξ)]

where

• ξ is a random parameter vector whose underlying distribution is given by P,

• h(x, ξ) is convex with respect to x for any fixed ξ,

• C is the feasible set for the decision vector x.

Then
f(x) = Eξ∼P [h(x, ξ)]

is convex. For example, for the linear regression problem, we consider

h(β, (x, y)) =
1

2
(y − β⊤x)2,

and

minimize E(x,y)∼P [h(β, (x, y))] = minimize E(x,y)∼P

[
1

2
(y − β⊤x)2

]
where x is the feature vector, y is the response variable, and (x, y) follows distribution P.
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Algorithm 2 Stochastic gradient descent for stochastic optimization

Initialize x1 ∈ C.
for t = 1, . . . , T do

Obtain a random vector ξt ∼ P and a subgradient g(xt, ξt) ∈ ∂h(xt, ξt).
Obtain xt+1 = ProjC {xt − ηtg(xt, ξt)} for a step size ηt > 0.

end for

3 Optimality conditions for non-differentiable convex functions

Now we consider the convex minimization problem with a general convex objective function that
is not necessarily differentiable.

minimize f(x)
subject to x ∈ C

=
minimize f(x) + IC(x)
subject to x ∈ Rd.

The first formulation is the constrained version, and the second formulation shows its unconstrained
version with the indicator function. We discussed optimality conditions for convex minimization
problems with a differentiable objective. In this section, we state and prove optimality conditions
for the general case, in which the objective can be non-differentiable.

Remember that when a convex function f is differentiable and C is a convex domain, x∗ ∈ C is an
optimal solution to minx∈C f(x) if and only if

∇f(x)⊤(x− x∗) ≥ 0 for all x ∈ C.

When f is not differentiable, subgradients generalize the gradient even for the optimality condition.

Theorem 13.3. For a convex optimization problem minx∈C f(x), x∗ ∈ C is an optimal solution if
and only if there exists s ∈ ∂f(x∗) such that

s⊤(x− x∗) ≥ 0 for all x ∈ C.

An immediate corollary of Theorem 13.3 is the following optimality condition for unconstrained
problems.

Corollary 13.4. For a convex optimization problem minx∈Rd f(x), x∗ ∈ Rd is an optimal solution
if and only if 0 ∈ ∂f(x∗).

Corollary 13.4 can be applied to the unconstrained formulation of constrained convex minimization.
Remember that when a convex function f is differentiable and C is a convex domain, x∗ ∈ C satisfies

∇f(x)⊤(x− x∗) ≥ 0 for all x ∈ C

if and only if
0 ∈ ∇f(x∗) +NC(x

∗)

because

NC(x
∗) =

{
g ∈ Rd : g⊤(y − x∗) ≤ 0 ∀y ∈ C

}
=
{
g ∈ Rd : IC(y) ≥ g⊤(y − x∗) + IC(x

∗) ∀y ∈ dom(IC)
}
.
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Corollary 13.5. For a convex optimization problem minx∈C f(x), x∗ ∈ C is an optimal solution
if and only if

0 ∈ ∂f(x∗) +NC(x
∗).

Likewise, we have the following condition for general convex functions.

Proof. By Corollary 13.4, it follows that x∗ ∈ C is an optimal solution to min (f(x) + IC(x)) if and
only if

0 ∈ ∂ (f(x∗) + IC(x
∗)) = ∂f(x∗) + ∂IC(x

∗).

Recall that

∂IC(x
∗) =

{
g ∈ Rd : IC(y) ≥ g⊤(y − x∗) + IC(x

∗) y ∈ dom(IC)
}

=
{
g ∈ Rd : g⊤(y − x∗) ≤ 0 ∀y ∈ C

}
= NC(x

∗).

Therefore, 0 ∈ ∂f(x∗) + ∂IC(x
∗) holds if and only if

0 ∈ ∇f(x∗) +NC(x
∗)

holds, as required.

In this section, we will prove Theorem 13.3 which states the optimality condition for convex mini-
mization. A tool that we need is the separating hyperplane theorem, which is an important result
in convex analysis on its own. We state the separating hyperplane theorem without proof.

Theorem 13.6 (Separating hyperplane theorem). Let C,D ⊆ Rd be disjoint convex sets, i.e.,
C ∩D = ∅, then there exists a ∈ Rd \ {0} and b ∈ R such that

a⊤x ≥ b, for all x ∈ C

a⊤x ≤ b, for all x ∈ D

Let us prove Theorem 13.3 using Theorem 13.6.

Proof of Theorem 13.3. (⇐) Assume that there exists s ∈ ∂f(x∗) such that s⊤(x − x∗) ≥ 0 holds
for all x ∈ C. Then it follows from the definition of subgradients that

f(x)− f(x∗) ≥ s⊤(x− x∗) ≥ 0 for all x ∈ C.

This implies that f(x) ≥ f(x∗) for all x ∈ C, so x∗ is optimal.

(⇒) Let us consider the following two sets.

C = {(x− x∗, t) : f(x)− f(x∗) ≤ t} ,
D = {(x− x∗, t) : x ∈ C, t < 0} .

Since f(x) − f(x∗) ≥ 0 for any x ∈ C, these two sets are disjoint. Then by Theorem 13.6, there
exists a ∈ Rd, b ∈ R, and c ∈ R such that (a, b) ̸= (0, 0) and

a⊤(x− x∗) + bt ≥ c, ∀x ∈ Rd, f(x)− f(x∗) ≤ t (13.1)

a⊤(x− x∗) + bt ≤ c, ∀x ∈ C, t < 0. (13.2)
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In (13.2), t can be arbitrarily small, so b ≥ 0. Suppose that b = 0, in which case (13.1) becomes

a⊤(x− x∗)0 ≥ c, ∀x ∈ Rd, f(x)− f(x∗) ≤ t.

Here, x−x∗ can be λ ·a where λ is an arbitrarily small number. This implies that a = 0. However,
this contradicts the condition that (a, b) ̸= (0, 0). Therefore, b > 0. Then, without loss of generality,
we may assume that b = 1. Then taking x = x∗ and t = 0 in (13.1), we obtain 0 ≥ c. Moreover,
taking x = x∗ and a number that is arbitrarily close to 0 for t, it follows that 0 ≤ c. Hence, c = 0.
Then (13.1) and (13.2) become

a⊤(x− x∗) + t ≥ 0, ∀x ∈ Rd, f(x)− f(x∗) ≤ t (13.3)

a⊤(x− x∗) + t ≤ 0, ∀x ∈ C, t < 0. (13.4)

Here, we take t = f(x)− f(x∗) in (13.3). Then (13.3) becomes

f(x) ≥ f(x∗)− a⊤(x− x∗),

which implies that −a ∈ ∂f(x∗). Moreover, we take a number that is arbitrarily close to 0 for t
in (13.4). Then it becomes a⊤(x− x∗) ≤ 0, which is equivalent to −a⊤(x− x∗) ≥ 0. Hence, −a is
the desired vector.
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