
IE 539: Convex Optimization KAIST, Fall 2024
Lecture #12: Lower bounds, Accelerated gradient descent, Frank-Wolfe October 28,
2024
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

• Projected gradient descent for constrained minimization.

• Lower bounds on the iteration complexity of a first-order method,

• Accelerated method: gradient descent with momentum,

2 Lower bounds on the iteration complexity of gradient methods

We discussed the convergence rates of gradient descent and the subgradient method. In particular,
for Lipschitz continuous functions, we know that the subgradient method guarantees the conver-
gence rate of O(1/

√
T) and requires O(1/ϵ2) iterations to achieve the error bounded by ϵ. For

smooth convex functions, gradient descent achieves O(1/T) convergence rate, and the number of
required iterations to bound the error by ϵ is O(1/ϵ). For functions that are both smooth and
strongly convex, the convergence rate of gradient descent is O(γT) for some 0 < γ < 1, and the
number of required iterations is O(log(1/ϵ)) to achieve an error of ϵ.

A natural question is as to whether we can find an algorithm that achieves a better convergence
rate. Regarding this question, we conceptualize the (first-order) oracle complexity of an algorithm.
A first-order oracle for convex minimization minx∈C f(x) takes a point x in C as an input and

Figure 12.1: Oracle that returns the function value and the first-order information

returns its function value f(x) as well as the first-order information, i.e., the gradient ∇f(x) or a
subgradient gt ∈ ∂f(x). Then the oracle complexity of an oracle-based algorithm counts the number
of oracle calls to terminiate. An oracle-based algorithm can be illustrated as follows. Basically, it

Figure 12.2: Illustration of an oracle-based algorithm

picks a new solution based on the history of past iterates and their first-order information.

1

We present some lower bound results on the oracle complexity given by Nemirovski and Yudin in
1983 [NY83] (see also Nesterov [Nes03] and Bubeck [Bub15]). We make the assumption that x1 = 0
and xt+1 belongs to the span of g1, . . . , gt where gs ∈ ∂f(xs).

Theorem 12.1 (See [Bub15]). There exists a convex and L-Lipschitz continuous function f : Rd →
R for some L > 0 such that iterates x1, . . . , xt with t ≤ d generated by any oracle-based algorithm
satisfies the following:

min
1≤s≤t

f(xs)− min
x∈B2(R)

f(x) ≥ RL

2(1 +
√
t)

where B2(R) = {x ∈ Rd : ∥x∥2 ≤ R} and R > 0.

Theorem 12.2 (See [Bub15]). There exists a convex and β-smooth fuction f : Rd → R with respect
to the ℓ2-norm for some β > 0 such that iterates x1, . . . , xt with t ≤ (d − 1)/2 generated by any
oracle-based algorithm satisfies the following:

min
1≤s≤t

f(xs)− min
x∈Rd

f(x) ≥ 3β∥x1 − x∗∥22
32(t+ 1)2

.

Theorem 12.3 (See [Bub15]). There exists a β-smooth and α-strongly convex fuction f : Rd → R
with respect to the ℓ2-norm for some β ≥ α > 0 such that xt with t ≥ 1 generated by any oracle-based
algorithm satisfies the following:

f(xt)− min
x∈Rd

f(x) ≥ α

2

(√
κ− 1√
κ+ 1

)2(t−1)

∥x1 − x∗∥22.

3 Accelerated gradient method

We just argued in the previous section that for smooth functions, there is some gap between the
convergence rate of gradient descent and the oracle lower bound. Can we find an algorithm that
achieves a better convergence rate or improve the lower bound? The answer to the question is that
there is indeed a better algorithm, which closes the gap, thereby achieving the optimal asymptotic
convergence rate. The algorithm is due to Nesterov [Nes83, Nes04], and it is referred to as Nesterov’s
accelerated gradient descent. Let us describe the algorithm and explain how it achieves a better
convergence rate.

The main idea behind Nesterov’s acceleration is to use “momentum”, so the algorithm is often
called gradient descent with momentum. Recall that gradient descent for a β-smooth function
follows the update rule of

xt+1 = xt −
1

β
∇f(xt)

from a given point xt. The idea of momentum is to incorporate the direction xt − xt−1 that we
took when moving from xt−1 to xt to obtain the next iterate xt+1. Then xt+1 is determined by not
only the previous iterate xt but also xt−1 which is the one before xt. Figure 12.3 illustrates how
the idea of momentum applies. Instead of applying the gradient descent update to xt, we move a
bit further from xt along the momentum direction that we took from xt−1 to xt. Let γt > 0 be a
weight, and

yt = xt + γt(xt − xt−1).

Then we apply the gradient descent update on yt to obtain the next point xt+1, as follows.

xt+1 = yt −
1

β
∇f(yt).

2

Figure 12.3: Illustration of gradient descent with momentum

Algorithm 1 Nesterov’s accelerated gradient descent

Initialize x1 ∈ dom(f).
Set x0 = x1.
for t = 1, . . . , T do

yt = xt + γt(xt − xt−1) for some γt > 0.
xt+1 = yt − 1

β∇f(yt).
end for
Return xT+1.

Algorithm 1 summarizes Nesterov’s accelerated gradient descent that we just explained. The fol-
lowing shows a convergence result of the accelerated gradient descent method for smooth functions.

Theorem 12.4. Let f : Rd → R be a β-smooth convex function in the ℓ2 norm. We set γt by the
following procedure.

λ0 = 1, λt ≤
1 +

√
1 + 4λ2

t−1

2
, γt =

λt − 1

λt+1
.

Then

f(xT)− f(x∗) ≤ 2β∥x1 − x∗∥22
T 2

where x∗ is an optimal solution to minx∈Rd f(x).

For example, we may set

λt =
t+ 2

2
, t ≥ 0.

Hence, the convergence rate is O(1/T 2), which matches the oracle lower bound. The number of
required iterations to bound the error by ϵ is O(1/

√
ϵ). The next result is for functions that are

both smooth and strongly convex.

Theorem 12.5. Let f : Rd → R be a convex function that is β-smooth and α-strongly convex in
the ℓ2 norm. We set

γt =

√
κ− 1√
κ+ 1

where κ = β/α. Then

f(xT)− f(x∗) ≤ α+ β

2

(√
κ− 1√
κ+ 1

)(T−1)/2

∥x1 − x∗∥22.

where x∗ is an optimal solution to minx∈Rd f(x).

3

4 Projection-free method

We saw that projected gradient descent minimizes a smooth function with a convergence rate of
O(1/T). There are some issues.

1. The projection step onto the feasible set C can be expensive.

2. We have used the ℓ2 norm to define smoothness.

Each projection step essentially amounts to solving an optimization problem, which can be difficult
depending on the structure of C. Even for the case when C is a polyhedron, the projection onto
C can an expensive procedure. The second point is that in our analysis of gradient descent for
smooth functions, there are parts that do need smoothness with respect to the ℓ2 norm. It is often
the case that smoothness in the ℓ2 norm is implied by smoothness in another norm, e.g., the ℓ1
norm.

∥∇f(x)−∇f(y)∥2 ≤
√
d∥∇f(x)−∇f(y)∥∞ ≤

√
dβ∥x− y∥1 ≤ dβ∥x− y∥2.

The implication of this inequality is the following. Even if a function is smooth in the ℓ1 norm with
a tiny smoothness parameter β, the smoothness parameter with respect to the ℓ2 norm can blow
up by a factor of dimension d, in which case we lose the desired dimension-free property.

4.1 Constrained optimization formulation of LASSO

We studied the folllowing formulation of LASSO given n data points n data points (x1, y1), . . . , (xn, yn).

min
β

1

n
∥y −Xβ∥22 + λ∥β∥1

where

• y = (y1, . . . , yn)
⊤ and the rows of X are x⊤1 , . . . , x

⊤
n ,

• the quadratic term

1

n

n∑
i=1

(yi − β⊤xi)
2 =

1

n
∥y −Xβ∥22

is the mean squared error of regressor β.

Recall that the formulation is the Lagrangian form of LASSO. The constrained form is given by

minimize
1

n
∥y −Xβ∥22

subject to ∥β∥1 ≤ t

where t is a parameter determining the degree of regularization. Hence, the constrained formulation
is a constrained convex optimization problem

min
C

1

n
∥y −Xβ∥22

where
C =

{
β ∈ Rd : ∥β∥1 ≤ t

}
.

Here, C is a polytope. We may run projected gradient descent to this problem, but it requires
projection onto polytope C which amounts to solving a quadratic program. On the other hand,
we know that the problem of optimizing a linear function over polytope C is a linear program, for
which we have fast solution methods.

4

4.2 Conditional gradient method: Frank-Wolfe algorithm

Motivated by the issues of projected gradient descent, we consider the conditional gradient method,
introduced by Frank and Wolfe in 1956 [FW56]. Named after the author, the conditional gradient
method is often referred to as the Frank-Wolfe algorithm. A pseudo-code of the method is given
as follows.

Algorithm 2 Frank-Wolfe algorithm

Initialize x1 ∈ C.
for t = 1, . . . , T − 1 do

Take vt ∈ argminv∈C ∇f(xt)
⊤v.

Update xt+1 = (1− λt)xt + λtvt for some 0 < λt < 1.
end for
Return xT .

The main component of the conditional gradient method is to compute the direction vt by solving

min
v∈C

∇f(xt)
⊤v

whose objective is a linear function. In particular, when C is a polyhedron, it is just a linear
program. This is in contrast to projected gradient descent which has a quadratic objective for each
projection step. For this reason, the conditional gradient method is called “projection-free”.

Another difference compared to projected gradient descent is that the direction we take for an
update can be different from −∇f . We provide Figure 12.4 for a pictorial description of the update
rule. vt is a point up to which we can move as far as we can in the direction of −∇f(xt) within C.

Figure 12.4: Illustration of an update from conditional gradient descent

Then we take a convex combination of the current point xt and vt to obtain the new iterate xt+1.

Definition 12.6. We say that a differentiable function f : Rd → R is β-smooth with respect to a
norm ∥ · ∥ for some β > 0 if

∥∇f(x)−∇f(y)||∗ ≤ β∥x− y∥

holds for any x, y ∈ Rd where ∥ · ∥∗ denotes the dual norm of ∥ · ∥.

The next theorem shows that conditional gradient descent converges with rate O(1/T) for any
smooth function with repsect to an arbitrary norm.

5

Theorem 12.7. Let f : Rd → R be a convex function that is β-smooth with respect to a norm ∥ · ∥
for some β > 0. Let {xt : t = 1, . . . , T} be the sequence of iterates generated by the Frank-Wolfe
algorithm with

λt =
2

t+ 1

for each t. Then for any t ≥ 2,

f(xt)− f(x∗) ≤ 2βR2

t+ 1

where x∗ is an optimal solution to minx∈C f(x) and R = supx,y∈C ∥x− y∥.

Proof. Note that

f(xt+1)− f(xt) ≤ ∇f(xt)
⊤(xt+1 − xt) +

β

2
∥xt+1 − xt∥2

= λt∇f(xt)
⊤(vt − xt) +

β

2
∥xt+1 − xt∥2

≤ λt∇f(xt)
⊤(x∗ − xt) +

β

2
∥xt+1 − xt∥2

≤ λt(f(x
∗)− f(xt)) +

β

2
∥xt+1 − xt∥2

where the first inequality is from the β-smoothness of f , the first equality follows from xt+1 =
(1 − λt)xt + λtvt, the second inequality is due to the definition of vt = argminv∈C ∇f(xt)

⊤v, and
the last inequality is by the convexity of f . Since

∥xt+1 − xt∥ = λt∥vt − xt∥ ≤ λtR,

it follows that

f(xt+1)− f(x∗) ≤ (1− λt)(f(xt)− f(x∗)) +
βλ2

tR
2

2

=
t− 1

t+ 1
(f(xt)− f(x∗)) +

2βR2

(t+ 1)2
.

By this inequality, it follows that

f(x2)− f(x∗) ≤ βR2

2
≤ 2βR2

3
.

Then by the induction hypothesis,

f(xt+1)− f(x∗) ≤ 2(t− 1) + 2

(t+ 1)2
βR2 =

t

(t+ 1)2
2βR2 ≤ 1

t+ 2
βR2,

as required.

4.3 Low-rank matrix completion

Let A ∈ Rn×p be a partially observable matrix, of which the missing entries are filled with 0. We
assume that even the non-zero entries of A are some noisy observations of the true values.

Such a matrix A arises in movie rating systems, in which case the rows of A correspond to the
users and the columns correspond to the list of movies. Hence, n is the number of users and p is

6

the number of movies. Here, one reasonable assumption is that the movie ratings of users depend
on a small set of features and criteria. One way to model this is to impose that the true rating
matrix A∗ satisfies

A ∼= A∗ = UV ⊤

where U is an n× k matrix and V is a p× k matrix with k < n, p. By A∗ = UV ⊤, the true rating
matrix A∗ has rank at most k. Then, to infer the true matrix A∗, we may attempt to solve the
following problem.

minimize
1

2
∥A−X∥2F

subject to rank(X) ≤ k

where ∥ · ∥F denotes the Frobenius norm, which essentially extends the ℓ2 norm over vectors to
matrices. Here, the low-rank constraint rank(X) ≤ k is non-convex, so we may consider the
following problem instead.

minimize
1

2
∥A−X∥2F

subject to ∥X∥nuc ≤ k
(12.1)

where ∥ · ∥nuc denotes the nuclear norm. Here, (12.1) is a constrained convex optimization problem
where the constraint set is given by

C =
{
X ∈ Rn×p : ∥X∥nuc ≤ k

}
.

To solve (12.1), the first approach is to apply projected gradient descent over the constraint set
C. It is known that projection onto the constraint set C amounts to computing the singular value
decomposition of A [DSSSC08].

The second approach is to use the Frank-Wolfe algorithm. GIven a current iterate matrix Xt, the
Frank-Wolfe update step considers

Vt ∈ argmin
{
Tr((A−Xt)

⊤V) : ∥V ∥nuc ≤ k
}
.

The associated minimization problem is equivalent to computing the top left and right singular
vectors of Xt − A, for which we may apply the classical power method [JS10]. Here, the power
method does not compute the full singular value decomposition, so it runs faster than the projection
operation.

References

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Found. Trends
Mach. Learn., 8(3–4):231–357, 2015. 2, 12.1, 12.2, 12.3

[DSSSC08] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient pro-
jections onto the l1-ball for learning in high dimensions. In Proceedings of the 25th
International Conference on Machine Learning, ICML ’08, page 272–279, New York,
NY, USA, 2008. Association for Computing Machinery. 4.3

[FW56] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3(1-2):95–110, 1956. 4.2

7

[JS10] Martin Jaggi and Marek Sulovský. A simple algorithm for nuclear norm regularized
problems. In Proceedings of the 27th International Conference on International Con-
ference on Machine Learning, ICML’10, page 471–478, Madison, WI, USA, 2010. Om-
nipress. 4.3

[Nes83] Yurii Nesterov. A method of solving a convex programming problem with convergence
rate o(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983. 3

[Nes03] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003. 2

[Nes04] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer
Academic Publishers, Norwell, 2004. 3

[NY83] Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and
method efficiency in optimization. 1983. 2

8

	Outline
	Lower bounds on the iteration complexity of gradient methods
	Accelerated gradient method
	Projection-free method
	Constrained optimization formulation of LASSO
	Conditional gradient method: Frank-Wolfe algorithm
	Low-rank matrix completion

