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Prologue

• In today’s fast-paced world driven by data, the ability to extract valuable
insights and make informed decisions is more crucial than ever.

• Optimization, the process of finding the best solution among a set of
alternatives, lies at the heart of this endeavor.

Examples

• Predicting customer behavior.

• Optimizing supply chains.

• Designing machine learning models.

• Solving complex decision-making problems.
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What is “Optimization”?

Portfolio optimization

• d financial assets (stocks, bonds, etc).

• Asset i that has return µi .

• σij is the covariance of assets i and j .

• We allocate xi fraction of our budget to
asset i .

Goal: find a portfolio (allocation) maximizing return while minimizing risk
(measured as a function of the covariance).
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What is “Optimization”?

Facility location

Goal: build “fire stations” covering all households while minimizing the longest
distance to a household.
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What is “Optimization”?

Support vector machine

• n data (x1, y1), . . . , (xn, yn) where yi ∈ {−1, 1} are
labels.

• We want to find a separating hyperplane

w⊤x = b

to classify data with +1 and data with −1.

Goal: find a separating hyperplane w⊤x = b with the “gap” (1/∥w∥) being
maximized.
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What is “Optimization”?

Linear regression

• n data points (x1, y1), . . . , (xn, yn).

• We want to find a linear rule

y = β⊤x

that best represents the relationship between x
and y .

Goal: find β minimizing

1

n

n∑
i=1

(yi − β⊤xi )
2

︸ ︷︷ ︸
mean squared error

+ R(β)︸ ︷︷ ︸
regularization

.
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What is “Optimization”?

Neural networks

• The linear model is often too restrictive in practical applications.

• In modern data science, neural networks are commonly used to solve a
supervised learning task.

• For simplicity, let us focus on a neural network with a single hidden layer.

7/16



What is “Optimization”?

Neural networks

• The linear model is often too restrictive in practical applications.

• In modern data science, neural networks are commonly used to solve a
supervised learning task.

• For simplicity, let us focus on a neural network with a single hidden layer.

7/16



What is “Optimization”?

Neural networks

• The linear model is often too restrictive in practical applications.

• In modern data science, neural networks are commonly used to solve a
supervised learning task.

• For simplicity, let us focus on a neural network with a single hidden layer.

7/16



What is “Optimization”?

Neural networks

• The linear model is often too restrictive in practical applications.

• In modern data science, neural networks are commonly used to solve a
supervised learning task.

• For simplicity, let us focus on a neural network with a single hidden layer.

7/16



What is “Optimization”?

Neural networks

• Given the predictor variable vector x ∈ Rd , our hypothesis is that the
response variable y ∈ R satisfies

E [y | x ] = w⊤
2 σ(W⊤

1 x) (1)

where

• W⊤
1 x is the output of the input layer,

• σ is an activation function,
• w2 is the weight vector that the hidden layer applies.

• As linear regression, we may consider the mean squared error,

min
W1,w2

1

n

n∑
i=1

(
yi − w⊤

2 σ(W⊤
1 xi )

)2

. (2)

• ReLU and the sigmoid function are common choices for σ.
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Optimization basics

A mathematical optimization problem has the following canonical form.

min
x

f (x)

s.t. x ∈ X

where

• x is referred to as the decision vector, the vector of decision variables, or
simply the decision variables,

• f (x) is the objective function that we want to optimize,

• X is the domain from which we may take values of the decision variables,

• min
x

indicates that the goal is to find and assigne values to the decision

variables x minimizing the associated objective function value.

For max
x

instead of min
x
, the goal is to maximize the objective function.
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Who is Dabeen?

Office: E2-2 #2109

Email: dabeenl@kaist.ac.kr

Office hours: Tuesday 2:00 - 3:00 pm

Research interests:

• Optimization Theory (discrete, continuous,
stochastic, online).

• Optimization for Machine Learning.

• Algorithm Design for Operations Research
(resource allocation, scheduling, dynamic routing).
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About this course

The following is a tentative list of topics covered in this course.

Theory

Convex Analysis
(sets, functions,
operations)

Optimality
Conditions

Semidefinite
Programming

Quadratic
Programming

Algorithms

Gradient Descent (GD)

Proximal, Projected, Online,
Stochastic GD

Frank-Wolfe

Proximal Point Algorithm and
Augmented Lagrangian Method

Operator Splitting and ADMM

Newton’s method and Quasi
Newton methods

Applications

Machine Learning (SVM,
LASSO, Ridge Regression,

Policy Gradient, etc.)

Statistics (Uncertainty
Quantification, Inverse
Covariance Selection)

Operations Research
(Advertisement Allocation,
Facility Location, Portfolio

Optimization)

• Many more applications will be discussed on the way.

• We might also cover other algorithms such as Mirror descent, and Interior
Point Methods.

11/16



Logistics

Class times: Monday and Wednesday 2:30 - 3:45 pm.

Assessment:

• 5 assignments (50%)

• Course project (20%)

• Take-home final (30%)

No attendance check (but be responsible!)
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Assignment

• Being comfortable with making mathematical arguments, writing proofs
and programming is required throughout this course.

• Typesetting in LaTeX is required for any submission.

• Easiest option: Overleaf (https://www.overleaf.com)

13/16
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Project

There are two options.

1. Review of a research paper related to convex optimization.

- Choose a paper published in a journal or announced at a coference.

2. Formulation and implementation of algorithms or methods for certain
optimization problem.

- Numerical implementation is required.

Submit (1) a proposal and (2) a final report.
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Objectives

We formulate a decision-making problem as an optimization model

P : min
x∈D

f (x).

Then
• We have to study the structure of the problem, f and D.

- Is P convex? a linear program (LP)? a quadratic program (QP)? a
semidefinite program (SDP)?

- Is f smooth? strongly convex? both?
- Is D convex? an affine subspace?

• We have to figure out and test candidate algorithms for solving P.
- Gradient Descent, simply? Proximal Gradient Descent? Newton’s method?

For this task, we need comprehensive knowledge in convex optimization.

Later, this knowledge will help you create a new optimization problem.
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Example: dual methods

Consider

min f (x) + g(y)

s.t. Ax + By = c

where f , g are convex and A,B, c are matrices of appropriate dimension.

How do we solve the problem?

• If f and g are both strongly convex, then Gradient Ascent in the dual.

• If only f is strongly convex while g has an easy Prox, then Proximal
Gradient in the dual.

• If neither f nor g is strongly convex, then Proximal Point Algorithm in the
dual or ADMM.
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