Introduction

Dabeen Lee

Industrial and Systems Engineering, KAIST

IE 539: Convex Optimization

September 2, 2024

<□> <□> <□> <□> <=> <=> <=> = の<⊙ 1/16

• In today's fast-paced world driven by data, the ability to extract valuable insights and make informed decisions is more crucial than ever.

• In today's fast-paced world driven by data, the ability to extract valuable insights and make informed decisions is more crucial than ever.

• Optimization, the process of finding the best solution among a set of alternatives, lies at the heart of this endeavor.

• In today's fast-paced world driven by data, the ability to extract valuable insights and make informed decisions is more crucial than ever.

• Optimization, the process of finding the best solution among a set of alternatives, lies at the heart of this endeavor.

Examples

• Predicting customer behavior.

• In today's fast-paced world driven by data, the ability to extract valuable insights and make informed decisions is more crucial than ever.

• Optimization, the process of finding the best solution among a set of alternatives, lies at the heart of this endeavor.

Examples

- Predicting customer behavior.
- Optimizing supply chains.

• In today's fast-paced world driven by data, the ability to extract valuable insights and make informed decisions is more crucial than ever.

• Optimization, the process of finding the best solution among a set of alternatives, lies at the heart of this endeavor.

Examples

- Predicting customer behavior.
- Optimizing supply chains.
- Designing machine learning models.

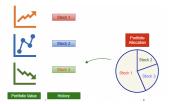
• In today's fast-paced world driven by data, the ability to extract valuable insights and make informed decisions is more crucial than ever.

• Optimization, the process of finding the best solution among a set of alternatives, lies at the heart of this endeavor.

Examples

- Predicting customer behavior.
- Optimizing supply chains.
- Designing machine learning models.
- Solving complex decision-making problems.

Portfolio optimization



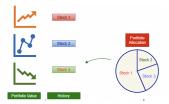
Portfolio optimization

• *d* financial assets (stocks, bonds, etc).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

DQC 3/16

Portfolio optimization

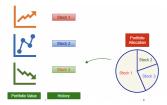


• *d* financial assets (stocks, bonds, etc).

DQC 3/16

• Asset *i* that has return μ_i .

Portfolio optimization



- *d* financial assets (stocks, bonds, etc).
- Asset *i* that has return μ_i .
- σ_{ij} is the covariance of assets *i* and *j*.

- E

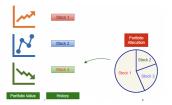
シへで 3/16

Portfolio optimization

- *d* financial assets (stocks, bonds, etc).
- Asset *i* that has return μ_i .
- σ_{ij} is the covariance of assets *i* and *j*.
- We allocate x_i fraction of our budget to asset *i*.

シへで 3/16

Portfolio optimization



- *d* financial assets (stocks, bonds, etc).
- Asset *i* that has return μ_i .
- σ_{ij} is the covariance of assets *i* and *j*.
- We allocate x_i fraction of our budget to asset *i*.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣…

シへで 3/16

Goal: find a portfolio (allocation) maximizing return while minimizing risk (measured as a function of the covariance).

Facility location

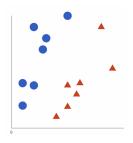
Facility location

Goal: build "fire stations" covering all households while minimizing the longest distance to a household.

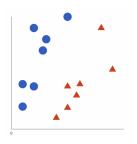
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣…

va@ 4/16

Support vector machine



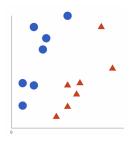
Support vector machine



• *n* data $(x_1, y_1), ..., (x_n, y_n)$ where $y_i \in \{-1, 1\}$ are labels.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 5/16

Support vector machine

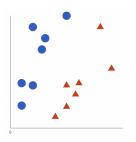


- $n \text{ data } (x_1, y_1), \dots, (x_n, y_n) \text{ where } y_i \in \{-1, 1\} \text{ are labels.}$
- We want to find a separating hyperplane

$$w^{\top}x = b$$

to classify data with +1 and data with -1.

Support vector machine



• $n \text{ data } (x_1, y_1), \dots, (x_n, y_n) \text{ where } y_i \in \{-1, 1\} \text{ are labels.}$

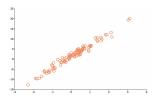
• We want to find a separating hyperplane

$$w^{\top}x = b$$

to classify data with +1 and data with -1.

Goal: find a separating hyperplane $w^{\top}x = b$ with the "gap" (1/||w||) being maximized.

Linear regression

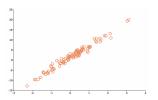


• *n* data points $(x_1, y_1), \ldots, (x_n, y_n)$.

(□) (四) (Ξ) (Ξ) (Ξ) Ξ

୬**९**℃ 6/16

Linear regression



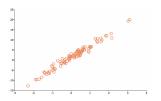
- *n* data points $(x_1, y_1), \ldots, (x_n, y_n)$.
- We want to find a linear rule

$$y = \beta^\top x$$

that best represents the relationship between x and y.

୬**९**℃ 6/16

Linear regression



- *n* data points $(x_1, y_1), \ldots, (x_n, y_n)$.
- We want to find a linear rule

$$y = \beta^\top x$$

that best represents the relationship between x and y.

シ९ 6/16

Goal: find β minimizing

Neural networks

• The linear model is often too restrictive in practical applications.

Neural networks

- The linear model is often too restrictive in practical applications.
- In modern data science, neural networks are commonly used to solve a supervised learning task.

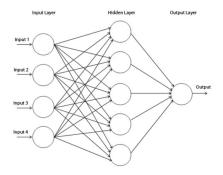
<□> <□> <□> <□> <三> <三> <三> <三> <三> ○<○ 7/16

Neural networks

- The linear model is often too restrictive in practical applications.
- In modern data science, neural networks are commonly used to solve a supervised learning task.
- For simplicity, let us focus on a neural network with a single hidden layer.

Neural networks

- The linear model is often too restrictive in practical applications.
- In modern data science, neural networks are commonly used to solve a supervised learning task.
- For simplicity, let us focus on a neural network with a single hidden layer.



Neural networks

• Given the predictor variable vector $x \in \mathbb{R}^d$, our hypothesis is that the response variable $y \in \mathbb{R}$ satisfies

$$\mathbb{E}\left[y \mid x\right] = w_2^{\top} \sigma(W_1^{\top} x) \tag{1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 8/16

where

Neural networks

• Given the predictor variable vector $x \in \mathbb{R}^d$, our hypothesis is that the response variable $y \in \mathbb{R}$ satisfies

$$\mathbb{E}\left[y \mid x\right] = w_2^{\top} \sigma(W_1^{\top} x) \tag{1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 8/16

where

- W₁^T x is the output of the input layer,
 σ is an activation function,
- w₂ is the weight vector that the hidden layer applies.

Neural networks

• Given the predictor variable vector $x \in \mathbb{R}^d$, our hypothesis is that the response variable $y \in \mathbb{R}$ satisfies

$$\mathbb{E}\left[y \mid x\right] = w_2^{\top} \sigma(W_1^{\top} x) \tag{1}$$

where

- W₁^T x is the output of the input layer,
 σ is an activation function,
- w₂ is the weight vector that the hidden layer applies.
- As linear regression, we may consider the mean squared error,

$$\min_{W_1, w_2} \quad \frac{1}{n} \sum_{i=1}^n \left(y_i - w_2^\top \sigma(W_1^\top x_i) \right)^2.$$
(2)

Neural networks

• Given the predictor variable vector $x \in \mathbb{R}^d$, our hypothesis is that the response variable $y \in \mathbb{R}$ satisfies

$$\mathbb{E}\left[y \mid x\right] = w_2^{\top} \sigma(W_1^{\top} x) \tag{1}$$

where

- W₁^T x is the output of the input layer,
 σ is an activation function,
- w₂ is the weight vector that the hidden layer applies.
- As linear regression, we may consider the mean squared error,

$$\min_{W_1, w_2} \quad \frac{1}{n} \sum_{i=1}^n \left(y_i - w_2^\top \sigma(W_1^\top x_i) \right)^2.$$
 (2)

<ロ> < 母> < 母> < 臣> < 臣> 三 のへで 8/16

• ReLU and the sigmoid function are common choices for σ .

A mathematical optimization problem has the following canonical form.

 $\min_{x} f(x)$ s.t. $x \in \mathcal{X}$

where

A mathematical optimization problem has the following canonical form.

$$\min_{x} f(x)$$

s.t. $x \in \mathcal{X}$

where

• x is referred to as the decision vector, the vector of decision variables, or simply the decision variables,

(ロ) (日) (日) (王) (王) (王) (16)

A mathematical optimization problem has the following canonical form.

$$\min_{x} f(x)$$

s.t. $x \in \mathcal{X}$

where

• x is referred to as the decision vector, the vector of decision variables, or simply the decision variables,

• f(x) is the objective function that we want to optimize,

A mathematical optimization problem has the following canonical form.

```
\min_{x} f(x)<br/>s.t. x \in \mathcal{X}
```

where

- x is referred to as the decision vector, the vector of decision variables, or simply the decision variables,
- f(x) is the objective function that we want to optimize,
- $\mathcal X$ is the domain from which we may take values of the decision variables,

A mathematical optimization problem has the following canonical form.

```
\min_{x} f(x)<br/>s.t. x \in \mathcal{X}
```

where

- x is referred to as the decision vector, the vector of decision variables, or simply the decision variables,
- f(x) is the objective function that we want to optimize,
- \mathcal{X} is the domain from which we may take values of the decision variables,
- min indicates that the goal is to find and assigne values to the decision variables x minimizing the associated objective function value.

A mathematical optimization problem has the following canonical form.

```
\min_{x} f(x)<br/>s.t. x \in \mathcal{X}
```

where

- x is referred to as the decision vector, the vector of decision variables, or simply the decision variables,
- f(x) is the objective function that we want to optimize,
- \mathcal{X} is the domain from which we may take values of the decision variables,
- min indicates that the goal is to find and assigne values to the decision variables x minimizing the associated objective function value.

For \max_{x} instead of \min_{x} , the goal is to maximize the objective function.

Who is Dabeen?

Office: E2-2 #2109

Email: dabeenl@kaist.ac.kr

Office hours: Tuesday 2:00 - 3:00 pm

Research interests:

- Optimization Theory (discrete, continuous, stochastic, online).
- Optimization for Machine Learning.
- Algorithm Design for Operations Research (resource allocation, scheduling, dynamic routing).

《曰》 《聞》 《臣》 《臣》 三臣 …

シママ 10/16

About this course

The following is a tentative list of topics covered in this course.

Theory

Convex Analysis (sets, functions, operations)

> Optimality Conditions

Semidefinite Programming

Quadratic Programming

Algorithms

Gradient Descent (GD)

Proximal, Projected, Online, Stochastic GD

Frank-Wolfe

Proximal Point Algorithm and Augmented Lagrangian Method

Operator Splitting and ADMM

Newton's method and Quasi Newton methods

Applications

Machine Learning (SVM, LASSO, Ridge Regression, Policy Gradient, etc.)

Statistics (Uncertainty Quantification, Inverse Covariance Selection)

Operations Research (Advertisement Allocation, Facility Location, Portfolio Optimization)

- Many more applications will be discussed on the way.
- We might also cover other algorithms such as Mirror descent, and Interior Point Methods.

Logistics

Class times: Monday and Wednesday 2:30 - 3:45 pm.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - 釣�� 12/16

Assessment:

- 5 assignments (50%)
- Course project (20%)
- Take-home final (30%)

No attendance check (but be responsible!)

Assignment

- Being comfortable with making mathematical arguments, writing proofs and programming is required throughout this course.
- Typesetting in LaTeX is required for any submission.
- Easiest option: Overleaf (https://www.overleaf.com)

IE331 Assignment 1

Dabeen Lee

March 14, 2023

1. My answer to question 1 is ...

$$epi(f) = \{(x, t) \in \mathbb{R}^d \times \mathbb{R} : \exists y \in \mathbb{R}^p \text{ s.t. } Ax + Dy + ht \leq r\}$$

2. (a) My answer to question 2(a) is ...

min f(x)s.t. $g_i(x) \le b_i$, $i \in [m]$, $x \in \mathbb{R}^d$.

(b) My answer to question 2(b) is ...

$$d(x) = \sum_{i \in [n]} ||x - v^i||_{\infty}$$

(c) My answer to question 2(c) is ...

$$d(x) = \sum_{i \in [n]} \left\|x - v^i\right\|_1$$

𝔍 𝔍 13/16

臣

(d) My answer to question 2(d) is ...

· □ > · (司 > · (日 > · (日 > ·)

terminationsetTot
 terminations

Project

There are two options.

- 1. Review of a research paper related to convex optimization.
 - Choose a paper published in a journal or announced at a coference.
- 2. Formulation and implementation of algorithms or methods for certain optimization problem.

- Numerical implementation is required.

Submit (1) a proposal and (2) a final report.

We formulate a decision-making problem as an optimization model

 $P: \min_{x\in D} f(x).$

We formulate a decision-making problem as an optimization model

$$P : \min_{x \in D} f(x).$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 - の Q @ 15/16

Then

• We have to study the structure of the problem, f and D.

We formulate a decision-making problem as an optimization model

 $P : \min_{x \in D} f(x).$

Then

- We have to study the structure of the problem, f and D.
 - Is *P* convex? a linear program (LP)? a quadratic program (QP)? a semidefinite program (SDP)?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 _ 釣�� 15/16

We formulate a decision-making problem as an optimization model

 $P : \min_{x \in D} f(x).$

Then

- We have to study the structure of the problem, f and D.
 - Is *P* convex? a linear program (LP)? a quadratic program (QP)? a semidefinite program (SDP)?

<ロト < 母 > < 臣 > < 臣 > 臣 の < で 15/16

- Is f smooth? strongly convex? both?

We formulate a decision-making problem as an optimization model

 $P : \min_{x \in D} f(x).$

Then

- We have to study the structure of the problem, f and D.
 - Is *P* convex? a linear program (LP)? a quadratic program (QP)? a semidefinite program (SDP)?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 _ 釣�� 15/16

- Is f smooth? strongly convex? both?
- Is D convex? an affine subspace?

We formulate a decision-making problem as an optimization model

 $P : \min_{x \in D} f(x).$

Then

- We have to study the structure of the problem, f and D.
 - Is *P* convex? a linear program (LP)? a quadratic program (QP)? a semidefinite program (SDP)?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 _ 釣�� 15/16

- Is f smooth? strongly convex? both?
- Is D convex? an affine subspace?

• We have to figure out and test candidate algorithms for solving *P*.

We formulate a decision-making problem as an optimization model

 $P : \min_{x \in D} f(x).$

Then

- We have to study the structure of the problem, f and D.
 - Is *P* convex? a linear program (LP)? a quadratic program (QP)? a semidefinite program (SDP)?
 - Is f smooth? strongly convex? both?
 - Is D convex? an affine subspace?
- We have to figure out and test candidate algorithms for solving *P*.
 - Gradient Descent, simply? Proximal Gradient Descent? Newton's method?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 _ 釣�� 15/16

We formulate a decision-making problem as an optimization model

 $P : \min_{x \in D} f(x).$

Then

- We have to study the structure of the problem, f and D.
 - Is *P* convex? a linear program (LP)? a quadratic program (QP)? a semidefinite program (SDP)?
 - Is f smooth? strongly convex? both?
 - Is D convex? an affine subspace?
- We have to figure out and test candidate algorithms for solving *P*.
 - Gradient Descent, simply? Proximal Gradient Descent? Newton's method?

For this task, we need comprehensive knowledge in convex optimization.

Later, this knowledge will help you create a new optimization problem.

Consider

min
$$f(x) + g(y)$$

s.t. $Ax + By = c$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 - のへで 16/16

where f, g are convex and A, B, c are matrices of appropriate dimension.

Consider

min
$$f(x) + g(y)$$

s.t. $Ax + By = c$

where f, g are convex and A, B, c are matrices of appropriate dimension.

How do we solve the problem?

Consider

min
$$f(x) + g(y)$$

s.t. $Ax + By = c$

where f, g are convex and A, B, c are matrices of appropriate dimension.

How do we solve the problem?

• If f and g are both strongly convex, then Gradient Ascent in the dual.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ 16/16

Consider

min
$$f(x) + g(y)$$

s.t. $Ax + By = c$

where f, g are convex and A, B, c are matrices of appropriate dimension.

How do we solve the problem?

- If f and g are both strongly convex, then Gradient Ascent in the dual.
- If only *f* is strongly convex while *g* has an easy Prox, then Proximal Gradient in the dual.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ 16/16

Consider

min f(x) + g(y)s.t. Ax + By = c

where f, g are convex and A, B, c are matrices of appropriate dimension.

How do we solve the problem?

- If f and g are both strongly convex, then Gradient Ascent in the dual.
- If only f is strongly convex while g has an easy Prox, then Proximal Gradient in the dual.
- If neither f nor g is strongly convex, then Proximal Point Algorithm in the dual or ADMM.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ 16/16