
IE 539 Convex Optimization Assignment 3

Fall 2024

Out: 30th October 2024

Due: 10th November 2024 at 11:59pm

Instructions

• Submit a PDF document with your solutions through the assignment portal on KLMS by the due date.
Please ensure that your name and student ID are on the front page.

• Late assignments will be subject to a penalty. Special consideration should be applied for in this case.

• It is required that you typeset your solutions in LaTeX. Handwritten solutions will not be accepted.

• Spend some time ensuring your arguments are coherent and your solutions clearly communicate your
ideas.

Question: 1 2 3 4 5 6 Total

Points: 20 10 20 15 15 20 100

i



IE 539 Convex Optimization Assignment 3 Due 10th November 2024

1. Consider the binary classification problem with n data points {(xi, yi) : i = 1, . . . , n} where xi ∈ Rd are
features and yi ∈ {−1, 1} are labels. From these, we want to learn a separating hyperplane to classify new
points x ∈ Rd as +1 or −1. Specifically, we want to find a hyperplane w⊤x = b so that if w⊤x ≥ b, then
we classify x as +1, and if w⊤x < b, then we label x as −1.

(a) (5 points) Given (w, b) ∈ Rd × R that gives rise to a hyperplane, we define the “penalty” of (w, b) as
the number of misclassifications among the training data set {(xi, yi) : i = 1, . . . , n}. Explain that the
penalty of (w, b) can be expressed as

n∑
i=1

1
(
yi ̸= sign

(
w⊤xi − b

))
.

(b) (5 points) We can find a hyperplane minimizing the penalty by solving the following optimization
problem.

min
(w,b)∈Rd×R

n∑
i=1

1
(
yi ̸= sign

(
w⊤xi − b

))
. (1) svm-1

Explain that

min
(w,b)∈Rd×R

n∑
i=1

max
{
0, 1− yi

(
w⊤xi − b

)}
(2) svm-2

is an upper bound on the value of (1).

(c) (10 points) Prove that the loss function

1

n

n∑
i=1

max
{
0, 1− yi

(
w⊤xi − b

)}
is convex with respect to (w, b).

2. (10 points) The perceptron algorithm takes as input n data points (x1, y1), . . . , (xn, yn) where xi ∈ Rd are
features and yi ∈ {−1, 1} are labels. As in the previous question, we want to determine a hyperplane
w⊤x = 0 that classifies the data points. Prove that the loss function

1

n

n∑
i=1

max
{
−yi(w

⊤xi), 0
}

is convex in w.

3. (20 points) Prove that for a positive definite matrix A,

f(x) =
1

2
x⊤Ax+ b⊤x+ c

is smooth and strongly convex in the ℓ2-norm. Write down the smoothness constant and the strong convexity
constant.

4. (15 points) In this question we prove the convergence of the projected subgradient method for functions
that are strongly convex and Lipschitz continuous. Let f : C → R be a function that is α-strongly convex
with respect to the ℓ2 norm and L-Lipschitz continuous in the ℓ2 norm over a convex domain C. Recall
that the projected subgradient method proceeds as follows.

• Choose x1 ∈ C.

• For t = 1, 2, 3, . . . , T − 1:

– Select any subgradient gt ∈ ∂f(xt) and step size ηt > 0.

– Compute xt+1 = ProjC{xt − ηtgt}.
(a) Set ηt =

2
α(t+1) . Show that

f

(
T∑

t=1

2t

T (T + 1)
xt

)
− f(x∗) ≤ 2L2

α(T + 1)

where x∗ ∈ argminx∈C f(x).
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(b) Set ηt =
1
αt . Show that

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ L2(1 + log T )

2αT

where x∗ ∈ argminx∈C f(x).

5. (15 points) In this question we prove the convergence of stochastic gradient descent for functions that are
strongly convex and Lipschitz continuous. Let f : C → R be a function that is α-strongly convex with
respect to the ℓ2 norm and L-Lipschitz continuous in the ℓ2 norm over a convex domain C. Recall that
stochastic gradient descent proceeds as follows.

• Choose x1 ∈ C.

• For t = 1, 2, 3, . . . , T − 1:

– Obtain an unbiased estimator ĝxt
of some g ∈ ∂f(xt).

– Update xt+1 = ProjC {xt − ηtĝxt
} for a step size ηt > 0.

Set ηt =
1
αt . Assuming ∥ĝxt

∥2 ≤ L for all t, show that

E

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ L2(1 + log T )

2αT

where x∗ ∈ argminx∈C f(x).

6. (20 points) In this question, we consider a basic version of mini-batch SGD. At each point x taken by SGD,
we sample unbiased estimators ĝ1x, . . . , ĝ

B
x of a subgradient gx ∈ ∂f(x) independently at random. Assume

that
∥gx∥2 ≤ L for all gx ∈ ∂f(x)

and that
E
[
∥ĝix − gx∥22 | x

]
≤ σ2.

Then mini-batch SGD uses

ĝx =
1

B

(
ĝ1x + · · ·+ ĝBx

)
as an unbiased estimator of gx. Prove that mini-batch SGD for minx∈Rd f(x) with step size η = 1/

√
T

guarantees that

E

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ ∥x1 − x∗∥22

2
√
T

+
1

2
√
T

(
L2 +

1

B
σ2

)
where x∗ is an optimal solution to minx∈Rd f(x).
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