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1 Outline

In this lecture, we study

e Optimality conditions for convex minimization,
e Normal cones and projection,

e Introduction to gradient descent,

2 Optimality conditions for convex minimization

2.1 Local optimality implies global optimality
A feasible solution x* is locally optimal to the optimization problem

minimize f(z)

subject to z € C
if there exists R > 0 such that
f(z*) =min{f(z): z€C, ||z —z"|| < R}.
Theorem 8.1. Any locally optimal solution to a convex optimization problem is (globally) optimal.

Proof. Suppose for a contradiction that a locally optimal solution z* to a convex optimization
problem mingcc f(x) is not globally optimal. Then there exists y € C such that f(y) < f(z*). By
the local optimality of z*, there exists R > 0 such that f(2*) = min{f(z): z € C, |z — 2*| < R},
which implies that ||y — z*|| > R. Let z be defined as
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Since z is a convex combination of * and y, it follows that z € C' and
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However, we have ||z — z*|| = R, contradicting the assumption that f(z*) = min{f(z) : = €
C, |l —a*| < R}. =

For nonconvex problems, a locally optimal solution is not necessarily an optimal solution, illustrated
in Figure 8.1.



Figure 8.1: Local optimal solution that is not optimal

2.2 First-order optimality condition

Next we establish an optimality condition for convex optimization problems with a differentiable
objective.

Theorem 8.2. For a convex optimization problem of the form (P) with f differentiable, z* € C' is
an optimal solution if and only if

Vi) (x—2*)>0 forallzecC.

We will prove this later in the course, when we discuss the general case allowing nondifferentiable
objectives. Figure 8.2 describes the optimality conditions for functions from R? to R. Basically, a
solution x* is optimal if we cannot move further from z* in C' in the direction of decreasing f. If
Vf(z*) =0, then z* is optimal.

Figure 8.2: Optimality of bi-variate convex functions

By Theorem 8.2, a sufficient condition for optimality is that Vf(z*) = 0. This, in fact, is a
necessary and sufficient condition for the unconstrained case.

Theorem 8.3. z* € R? is optimal to min,cga f(x) if and only if
Vf(z*)=0.

Proof. (<) If Vf(z*) = 0, then it trivially holds that V f(z*)T (z —2*) > 0 for z € R%. Then z* is
optimal due to Theorem 8.2.

(=) Let x = 2* — aV f(z*). Then by Theorem 8.2, we have
Vi) (@ - 2*) = —allV £(@*)]3 > 0.
This in turn implies that |V f(z*)|]2 = 0 and thus V f(z*) = 0. O
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Figure 8.3 describes the optimality conditions for functions from R to R.

Figure 8.3: Optimality of univariate convex functions

Example 8.4. Consider the following equality-constrained problem.
minimize f(z)
subject to Ax =b

where f is convex and A, b are matrices of appropriate dimensions. Then a solution x* is optimal
if and only if Vf(2*)"(z — 2*) > 0 for all = such that Az = b. Note that the latter condition is
equivalent to Vf(z*)Tv = 0 for all v in the null space of A. Since the orthogonal complement of

null(A) is the column space of AT, we have Vf(x*) = ATu for some .

The normal cone of C at z € C is defined as
Ne(z)={geR?: g"(y—2) <0forallyc C}.

Figure 8.4 shows some examples.
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Figure 8.4: Optimality of univariate convex functions

Then the optimality condition in Theorem 8.2 is equivalent to
—Vf(x*) € No(z*) <+ 0eVf(z")+ No(z").

Later in the course, we will give a direct proof for this equivalent condition.

2.3 Projection

We consider the problem of projecting a point p onto a convex set C, that is to find a point x € C

minimizing the distance to p.
Ce . 2
minimize ||z — pl3

subject to z € C
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Let Proj(p) denote the projection of p to C'. By definition, Proj-(p) is an optimal solution to
the optimization problem. Note that the gradient of ||z — p||3 is

2(z — p).

As Proj-(p) is the optimal solution to the above optimization problem, it follows from Theorem 8.2
that
2(Projo(p) — p) ' (# — Proja(p)) >0 for all z € C.

Equivalently,
(Projo(p) — p, Projo(p) —z) <0 forall z € C.

Next let us consider two points u,v and their projections onto C, given by Proj~(u) and Proj-(v),
respectively. Then we have

(Projco(u) — u, Projo(u) — Projo(v)) <0,
(Projc(v) — v, Projo(v) — Projo(u)) <0

Adding these two inequalities, we obtain
[Proje(u) — Proje(v)|3 — (u — v, Proja(u) — Proja(v)) < 0.
Then it follows from the Cauchy-Schwarz inequality that

[Projc(u) = Proje(v)l2 < [lu = vlla.

3 Introduction to gradient descent
3.1 Generic descent method

Let f: R? — R be a function. Given a point » € R?, we say that a nonzero vector d € R\ {0} is
a descent direction of f at x if there exists some ¢ > 0 such that

f(z+nd) < f(z)

forany 0 < n <e.

Hence, moving towards a descent direction d can decrease the function value, but how much we
move along the direction, captured by 7, is important. We often call ) a step size. Based on descent
directions and proper step sizes, we may develop the following algorithm for minimizing a function.

Algorithm 1 Generic descent method

Initialize x; € dom(f).
fort=1,....,7 do

Fetch a descent direction d;.

ZTey1 = ¢ + nedy for a step size ny > 0.
end for

n fact, there exists a unique optimal solution to the above optimization problem. Why?
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Figure 8.5: Illustration of descent directions

Whether the descent method, given by Algorithm 1, converges or not depends on how we choose

the step sizes n; for t > 1.

Figure 8.6: Different sequences of step sizes and convergence behavior

Exact line search We choose the step size 7 as

ne = argmin f(zy 4 ndy).
n=>0

Here, choosing the step size this way requires solving an optimization problem, which is often an
expensive procedure.

Backtracking line search Before we describe the backtracking line search procedure, we char-
acterize descent directions in terms of the gradient. If f is differentiable, we have

i &+ 0d) = f(z)

_ T
i p =d Vf(x) (8.1)

as the limit exists. Then V f(x)d measures the rate of change in f along direction d at z.

Moreover, the following lemma directly follows from (8.1) that holds for differentiable functions.

Lemma 8.5. Let f : R? — R be a differentiable function. Then a nonzero vector d € R4\ {0} is a
descent direction if
Vf(x)'d<o.

For example, —V f(z) is a descent direction at any x.

Based on the characterization of descent directions in Lemma 8.5, we do backtracking line search
described as follows.



1. Fix parameters 0 < <1l and 0 < a < 1.
2. Start with an initial step size n > 0.

3. Until the following condition is satisfied, we shirink 7 < 3.
fla+ndy) < f(z) +anV f(z)" d.
4. We take the final  and set 1, = 7.

3.2 Gradient descent method
The steepest direction of a differentiable function f at a point x can be defined as

1
. T
arg min {Vf(x) d: |dls = 1} - {—Vf(x)}.

IVf ()2
Basically, the steepest direction, which is the direction opposite to the gradient, is the one with
the highest rate of decrease of f at x. Then using —V f for a descent direction at any point of the
descent method, we obtain the following algorithm, which is commonly known as gradient descent.

Algorithm 2 Gradient descent method
Initialize x; € dom(f).
fort=1,...,7 do
Tiy1 = x¢ — eV f () for a step size n, > 0.
end for

Example 8.6. We consider f(z) = 222 + 3z : R — R. We already know that the minimizer of f
is given by x* = —3/4, but we apply gradient descent to obtain the same conclusion. Let us take
an arbitrary initial point x;. For now, we use a constant step size, i.e. n; =7 for any ¢t > 1.

Tip1 =z — NV f (1)
=z — n(dxy + 3)
= (1 —4n)x; —3n
= (1 —4n)((1 — 4n)x—1 — 3n) — 3n
= (1—4n)%we1 — 3n((1 — 4n) + 1)

t—1
= (1—dn)'zy —3n ) _(1—4p)'
=0
1—(1—4n)
= (1 —4n)tzy —3n -
( n)'x1— 3n 1= (1 —4p)

Hence, as long as |1 — 47| < 1, z; converges to —3/4. Note that

f(aria) = (@) = O((1 — 4n)T).
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Here, the convergence rate is (1 —4n)7, so the error term exponentially decreases. Therefore, after
T = O(log(1/¢)) iterations, we obtain

flzri1) — f(@") <e

This is often called a “linear convergence”. Here, the term “linear” means that the required number
of iterations is linear in log(1/e).
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