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1 Outline

In this lecture, we consider

• conic duality theorems

• second-order cone programming

2 Conic duality theorem

In the last lecture, we learned that a conic program is an optimization problem is defined with a
pointed and closed convex cone K with a nonempty interior:

minimize c⊤x

subject to Ax− b ∈ K.
(CP)

When K = Rn
+, (CP) reduces to linear program

minimize c⊤x

subject to Ax ≥ b.
(LP)

We know that the dual of the linear program (LP) is given by

maximize b⊤y

subject to A⊤y = c

y ≥ 0.

(dual-LP)

Moreover, the dual of (CP) can be derived by the following procedure.

(1) Take x such that Ax− b ∈ K and y ∈ K∗. Then y⊤(Ax− b) ≥ 0, and therefore,

y⊤Ax ≥ y⊤b.

(2) If y ∈ K∗ further satisfies A⊤y = c, then

c⊤x = y⊤Ax ≥ y⊤b = b⊤y.

(3) Then

maximize b⊤y

subject to A⊤y = c

y ∈ K∗
(dual-CP)

provides a lower bound on the value of (CP). Here, (dual-CP) is the dual conic program
of (CP).
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Remark 7.1. Here, what is the intuition behind (dual-CP)? What we argued while deriv-
ing (dual-CP) is the following. Take a feasible solution x to (CP). Then we have Ax− b ∈ K. Now
suppose that we have y ∈ K∗, where K∗ is the dual cone of K, such that A⊤y = c. Then we saw
that

c⊤x ≥ b⊤y.

Note that this holds for any pair of (x, y) satisfying the condition. In particular, what this implies
that b⊤y provides a lower bound on the optimum value of (CP), as we may minimize c⊤x over all
x satisfying Ax− b ∈ K.

That being said, then what does (dual-CP) do? Well, we saw that for any y with A⊤y = c and
y ∈ K∗, b⊤y provides a lower bound. What is the strongest possible lower bound obtained that
way? (dual-CP) computes it.

We have shown that the value of the conic program (CP) is lower bounded by the value of its dual,
given by (dual-CP). What is striking is that the two values coincide under some conditions! For
the case of linear programming, this is known as the strong LP duality theorem. To be precise,
the value of (LP) and that of (dual-LP) are the same if (LP) is feasible and bounded. It turns out
that we may extend this strong duality result to general conic programs.

We have already observed that the weak duality for LP extends to conic programming. Formally,

Theorem 7.2. The optimal value of (dual-CP) is a lower bound on that of (CP).

Before we state the strong duality theorem for conic programming, we need to define the notion of
strict feasibility.

Definition 7.3. We say that a solution x is strictly feasible to (CP) if Ax−b belongs to the interior
of K. When that is the case, we write it as

Ax− b >K 0 or Ax >K 0.

Moreover, we say that (CP) is strictly feasible if it has a strictly feasible solution.

For example, x is strictly feasible to (LP) if Ax > b. Now we are ready to state the following
duality result.

Theorem 7.4 (See Theorem 2.4.1 in [BTN01]). The following statements hold for (CP) and (dual-CP).

1. If (CP) is strictly feasible and bounded, then (dual-CP) is solvable and the optimal values
of (CP) and (dual-CP) are the same.

2. If (dual-CP) is strictly feasible and bounded, then (CP) is solvable and the optimal values
of (CP) and (dual-CP) are the same.

We will learn the notion of Lagrangian duality later in the course, and the strict feasibility condition
is analogous to the Slater condition.
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3 Second-order cone programming

A second-order cone program (SOCP) is an optimization problem of the following form:

minimize f⊤x

subject to ∥Aix+ bi∥2 ≤ c⊤i x+ di for i = 1, . . . ,m,

Ex = g.

(SOCP)

Exercise 7.5. Prove that (SOCP) is a conic program.

3.1 Example: chance-constrained linear programming

We consider a chance-constrained program (CCP) given as follows.

minimize c⊤x

subject to P
(
a⊤x ≤ b

)
≥ 1− ϵ

(CCP)

where the constraint vector a is random. The problem is to find a solution x satisfying the constraint
a⊤x ≤ b with probability at least 1− ϵ. For example, we can formulate the portfolio optimization
as (CCP).

minimize p⊤x

subject to P
(
r⊤x ≥ 1 + α

)
≥ 1− ϵ,

1⊤x = 1

where pi is the unit price of financial asset i ∈ [d], and ri is the random return of asset i ∈ [d]. The
goal of the problem is to find a portfolio x whose return is at least 1 + α with probability at least
1− ϵ while minimizing the unit price of the portfolio.

When the coefficient vector a in (CCP) follows the multivariate Gaussian distribution with mean
ā and covariance Σ, we can reformulate it as a second-order cone program. Let u = a⊤x. Then u
is a random variable with mean ū = ā⊤x and variance σ2 = x⊤Σx. Then P

(
a⊤x ≤ b

)
≥ 1− ϵ can

be rewritten as

P
(
u− ū

σ
≤ b− ū

σ

)
≥ 1− ϵ. (7.1)

Here,
u− ū

σ
follows the Gaussian distribution with mean 0 and variance 1 whose cumulative distribution function
is given by Φ, i.e.

Φ(z) =
1√
2π

∫ z

−∞
e−t2/2dt.

Then (7.1) is equivalent to

Φ

(
b− ū

σ

)
≥ 1− ϵ

and therefore is equivalent to

b− ū

σ
=

b− ā⊤x

∥Σ1/2x∥2
≥ Φ−1(1− ϵ).
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Hence, (CCP) can be equivalently written as

minimize c⊤x

subject to ā⊤x+Φ−1(1− ϵ)∥Σ1/2x∥2 ≤ b.

3.2 Example: convex quadratic programming

Recall that a convex quadratic program can be rewritten as follows.

minimize t

subject to t ≥ 1

2
x⊤Qx+ p⊤x.

Here, the constraint t ≥ 1
2x

⊤Qx + p⊤x can be written as a second-order cone constraint. Recall
that for any positive semidefinite matrix Q, there exists a matrix P such that Q = P⊤P . Then
t ≥ 1

2x
⊤Qx+ p⊤x is equivalent to

x⊤P⊤Px ≤ 2t− 2p⊤x.

Note that the left-hand side equals ∥Px∥22 and that

2t− 2p⊤x = (t− p⊤x+ 1/2)2 − (t− p⊤x− 1/2)2.

This implies that x⊤P⊤Px ≤ 2t− 2p⊤x is equivalent to

∥Px∥22 + (t− p⊤x− 1/2)2 ≤ (t− p⊤x+ 1/2)2,

which is equivalent to ∥∥∥∥( Px
t− p⊤x− 1/2

)∥∥∥∥
2

≤ t− p⊤x+ 1/2.

Therefore, a convex quadratic program is a second-order cone program.

3.3 Reduction to semidefinite programming

In fact, (SOCP) is an instance of semidefinite programming.

Lemma 7.6. Let y ∈ Rd. Then ∥y∥2 ≤ s is equivalent to(
s y⊤

y s · I

)
⪰ 0

Proof. (⇐) Note that

(∥y∥2,−y⊤)

(
s y⊤

y s · I

)(
∥y∥2
−y

)
= 2(s∥y∥22 − y⊤y∥y∥2) ≥ 0,

implying in turn that s ≥ ∥y∥2.
(⇒) Let u ∈ R and v ∈ Rd. Then

(u, v⊤)

(
s y⊤

y s · I

)(
u
v

)
= u2s+ 2uy⊤v + sv⊤v

≥ ∥y∥2(u2 + ∥v∥22) + 2uy⊤v

≥ ∥y∥2(u2 + ∥v∥22)− 2|u| · ∥y∥2 · ∥v∥2
≥ 0
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where the first inequality comes from the assumption that s ≥ ∥y∥2 and the second and third
inequalities are due to the Cauchy-Schwarz inequality. Therefore, the matrix is positive semidefinite
as required.

By Lemma 7.6, any second-order cone constraint can be written as an SDP constraint.

References

[BTN01] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Optimization. So-
ciety for Industrial and Applied Mathematics, 2001. 7.4

5


	Outline
	Conic duality theorem
	Second-order cone programming
	Example: chance-constrained linear programming
	Example: convex quadratic programming
	Reduction to semidefinite programming


