1 Outline

In this lecture, we study

- quadratic programming,
- semidefinite programming,
- conic programming,
- derivation of dual conic programs.

2 Quadratic programming

A quadratic program (QP) is an optimization problem of the following form.

$$
\begin{align*}
\operatorname{minimize} & \frac{1}{2} x^{\top} Q x+p^{\top} x \tag{QP}\\
\text { subject to } & A x \geq b
\end{align*}
$$

The quadratic program is convex only if Q is positive semidefinite.

2.1 Example: portfolio optimization

We studied the following formulation of portfolio optimization.

$$
\begin{aligned}
\operatorname{maximize} & \mu^{\top} x-\gamma x^{\top} \Sigma x \\
\text { subject to } & 1^{\top} x=1, \\
& x \in \mathbb{R}_{+}^{n}
\end{aligned}
$$

where $\gamma>0$ and Σ is a covariance matrix that is positive semidefinite. Note that

$$
\max \{f(x): x \in C\}=-\min \{-f(x): x \in C\}
$$

holds for any objective function f and any feasible set C. Thus, the formulation is equivalent to

$$
\begin{aligned}
\operatorname{minimize} & \gamma x^{\top} \Sigma x-\mu^{\top} x \\
\text { subject to } & 1^{\top} x=1 \\
& x \geq 0
\end{aligned}
$$

which is a quadratic program because $\gamma>0$ and Σ is positive semidefinite.

2.2 Example: support vector machine

The next example is the formulation of support vector machine.

$$
\min _{w, b} \quad \lambda\|w\|_{2}^{2}+\frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}-b\right)\right\} .
$$

Here, $\|w\|_{2}^{2}=w^{\top} w=w^{\top} I w$ where I is the identity matrix, and therefore, $\|w\|_{2}^{2}$ is a convex quadratic function. Moreover, the max terms in the objective can be replaced by adding some auxiliary variables. Note that the formulation is equivalent to

$$
\begin{aligned}
\operatorname{minimize} & \lambda w^{\top} w+\frac{1}{n} \sum_{i=1}^{n} t_{i} \\
\text { subject to } & t_{i} \geq \max \left\{0,1-y_{i}\left(w^{\top} x_{i}-b\right)\right\} \text { for } i=1, \ldots, n
\end{aligned}
$$

Next, we can rewrite the constraints as linear constraints as the following.

$$
\begin{array}{rll}
\operatorname{minimize} & \lambda w^{\top} w+\frac{1}{n} \sum_{i=1}^{n} t_{i} & \\
\text { subject to } & t_{i} \geq 1-y_{i}\left(w^{\top} x_{i}-b\right) & \text { for } i=1, \ldots, n \\
& t_{i} \geq 0 & \text { for } i=1, \ldots, n
\end{array}
$$

Therefore, it is a convex quadratic program with a quadratic objective and linear constraints.

2.3 Example: LASSO

Recall that LASSO can be formulated as

$$
\min _{\beta} \quad \frac{1}{n}\|y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1} .
$$

Note that

$$
\|y-X \beta\|_{2}^{2}=(y-X \beta)^{\top}(y-X \beta)=\beta^{\top} X^{\top} X \beta-2 y^{\top} X \beta+y^{\top} y
$$

Here, $X^{\top} X$ is positive semidefinite because

$$
u^{\top} X^{\top} X u=\|X u\|_{2}^{2} \geq 0
$$

for any vector u. In addition, $y^{\top} y$ is a constant term which can be ignored from the objective. Moreover, we can replace the $\|\beta\|_{1}$ term by an auxiliary variable and a set of linear constraints. To be specific, the problem is equivalent to

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{n} \beta^{\top} X^{\top} X \beta-\frac{2}{n} y^{\top} X \beta+\lambda t \\
\text { subject to } & t \geq \sum_{i=1}^{d} s_{i} \\
& s_{i} \geq \beta \geq-s_{i} \text { for } i=1, \ldots, d
\end{aligned}
$$

Hence, LASSO can be reformulated as a quadratic program.

3 Semidefinite programming

3.1 Motivation: max-cut

Semidefinite programming provides useful tools for solving difficult combinatorial optimization problems. For example, we consider the "max-cut problem" defined as follows. Given a graph $G=(V, E)$, find a partition the vertex set V so that the number of edges crossing the partition is maximized. Here, a partition $\left(V_{1}, V_{2}\right)$ of V consists of two sets V_{1}, V_{2} satisfying $V_{1} \cup V_{2}=V$ and $V_{1} \cap V_{2}=\emptyset$, and the set of edges crossing the partition is basically $\left\{u v \in E: u \in V_{1}, v \in V_{2}\right\}$. For example, in Figure 6.1, there is a graph of 5 vertices partitioned into red and black vertices, and the edges highlighted are the ones crossing the partition.

Figure 6.1: Edges crossing a partition

The problem can be formulated by the following (discrete) optimization problem:

$$
\begin{aligned}
\operatorname{maximize} & \sum_{i j \in E} \frac{1-x_{i} x_{j}}{2} \\
\text { subject to } & x_{i} \in\{-1,1\} \text { for } i \in V
\end{aligned}
$$

As long as $x_{i} \in \mathbb{R}, x_{i} \in\{-1,1\}$ is equivalent to $x_{i}^{2}=1$. Hence, the formulation is equivalent to

$$
\begin{aligned}
\text { maximize } & \sum_{i j \in E} \frac{1-x_{i} x_{j}}{2} \\
\text { subject to } & x_{i}^{2}=1 \text { for } i \in V .
\end{aligned}
$$

Let $d=|V|$. Then we consider a $d \times d$ matrix X whose entry at i th row and j th column, $X_{i j}$, is $x_{i} x_{j}$. Then we have that $X=x x^{\top}$, which is the outer product of vector x and itself. In fact, X is of the form $X=x x^{\top}$ if and only if X is positive semidefinite and the rank of X is precisey 1 . What this implies is that, the max-cut formulation can be rewritten as

$$
\begin{aligned}
\operatorname{maximize} & \sum_{i j \in E} \frac{1-X_{i j}}{2} \\
\text { subject to } & X_{i i}=1 \text { for } i \in V, \\
& X \succeq 0, \\
& \operatorname{rank}(X)=1
\end{aligned}
$$

Here, the constrsint $\operatorname{rank}(X)=1$ is nonconvex. A common approach is to take out the nonconvex constraint and consider

$$
\begin{aligned}
\operatorname{maximize} & \sum_{i j \in E} \frac{1-X_{i j}}{2} \\
\text { subject to } & X_{i i}=1 \text { for } i \in V, \\
& X \succeq 0 .
\end{aligned}
$$

This is often called the semidefinite programming (SDP) relaxation of max-cut.

3.2 General form

More generally, a semidefinite program is an optimization problem of the following form. Let C and A_{1}, \ldots, A_{m} be $d \times d$ matrices, and we have

$$
\begin{align*}
\operatorname{minimize} & \operatorname{tr}\left(C^{\top} X\right) \\
\text { subject to } & \operatorname{tr}\left(A_{\ell}^{\top} X\right)=b_{\ell} \text { for } \ell=1, \ldots, m \tag{SDP}\\
& X \succeq 0
\end{align*}
$$

where

$$
\operatorname{tr}\left(C^{\top} X\right)=\sum_{i=1}^{d} \sum_{j=1}^{d} C_{i j} X_{i j} \quad \text { and } \quad \operatorname{tr}\left(A_{\ell}^{\top} X\right)=\sum_{i=1}^{d} \sum_{j=1}^{d}\left(A_{\ell}\right)_{i j} X_{i j} .
$$

Here, if we view matrix X as a $(d \times d)$-dimensional vector, then the objective and the equality constraints are "linear" in X. Hence, (SDP) is analogous to linear programming. Recall that we defined the linear programming (LP) dual of a given linear program. Likewise, we may define the notion of semidefinite programming (SDP) dual. The dual of (SDP) is

$$
\begin{align*}
\operatorname{maximize} & \sum_{\ell=1}^{m} b_{\ell} y_{\ell} \\
\text { subject to } & \sum_{\ell=1}^{m} y_{\ell} A_{\ell} \preceq C \tag{dual-SDP}
\end{align*}
$$

where $\sum_{\ell=1}^{m} y_{\ell} A_{\ell} \preceq C$ means $C-\sum_{\ell=1}^{m} y_{\ell} A_{\ell}$ is positive semidefinite. If an optimization is in either form, we say that it is a semidefinite program.
We will study more about duality later in this course. We have dicussed LP duality, and in particular, we covered how to derive the dual of a linear program and learned duality theorems. The notion of duality extends to more general classes of convex programming problems. We will learn how to derive the dual of a given optimization problem, and we will define the associated weak and strong duality statements.

3.3 Example: quadratic programming

(QP) can be rewritten as

$$
\begin{aligned}
\operatorname{minimize} & t \\
\text { subject to } & A x \geq b, \\
& x^{\top} Q x+2 p^{\top} x \leq 2 t
\end{aligned}
$$

In fact, this can be expressed as an instance of (dual-SDP) by rewriting $A x \geq b$ and $x^{\top} Q x+2 p^{\top} x \leq$ $2 t$ using some positive semidefinite matrices.

Note that $A x-b$ is a vector and $A x \geq b$ means that the entries of $A x-b$ are nonnegative. $\operatorname{Diag}(A x-b)$ is the diagonal matrix whose diagonal entries are the components of $A x-b$. In fact, $A x-b \geq 0$ holds if and only if

$$
\operatorname{Diag}(A x-b) \succeq 0
$$

which means that $\operatorname{Diag}(A x-b)$ is positive semidefinite.
Next we consider $x^{\top} Q x+2 p^{\top} x \leq 2 t$ where Q is positive semidefinite.
Lemma 6.1. For any positive semidefinite matrix Q, there exists a matrix P such that $Q=P^{\top} P$.
Proof. By the eigendecomposition theorem for symmetric marices, Q can be written as $Q=U \Lambda U^{\top}$ where U is an orthonormal matrix and Λ is a diagonal matrix whose diagonal entries consist of the eigenvalues of Q. Since Q is positive semidefinite, all its eigenvalues are nonnegative, and therefore, all diagonal entries of Λ are nonnegative. Then $\Lambda^{1 / 2}$ can be properly defined by taking the square root of each diagonal entry of Λ. Then $\Lambda=\left(\Lambda^{1 / 2}\right)^{\top} \Lambda^{1 / 2}$ as $\Lambda^{1 / 2}$ is symmetric as well. Then

$$
Q=U \Lambda U^{\top}=U\left(\Lambda^{1 / 2}\right)^{\top} \Lambda^{1 / 2} U^{\top}=\left(\Lambda^{1 / 2} U^{\top}\right)^{\top}\left(\Lambda^{1 / 2} U^{\top}\right)
$$

Taking $P=\Lambda^{1 / 2} U^{\top}$, we have $Q=P^{\top} P$.
By Lemma 6.1, $x^{\top} Q x+2 p^{\top} x \leq 2 t$ is equivalent to

$$
x^{\top} P^{\top} P x+2 p^{\top} x \leq 2 t
$$

for some matrix P. We also need the following result.
Lemma 6.2. Let $y \in \mathbb{R}^{d}$. Then $y^{\top} y \leq s$ is equivalent to

$$
\left(\begin{array}{cc}
s & y^{\top} \\
y & I
\end{array}\right) \succeq 0
$$

where I is the $d \times d$ identity matrix.
Proof. (\Leftarrow) Note that

$$
\left(1,-y^{\top}\right)\left(\begin{array}{cc}
s & y^{\top} \\
y & I
\end{array}\right)\binom{1}{-y}=s-y^{\top} y \geq 0
$$

(\Rightarrow) Let $u \in \mathbb{R}$ and $v \in \mathbb{R}^{d}$. Then

$$
\begin{aligned}
\left(u, v^{\top}\right)\left(\begin{array}{cc}
s & y^{\top} \\
y & I
\end{array}\right)\binom{u}{v} & =u^{2} s+2 u y^{\top} v+v^{\top} v \\
& \geq u^{2} y^{\top} y+2 u y^{\top} v+v^{\top} v \\
& =(u y+v)^{\top}(u y+v) \\
& \geq 0 .
\end{aligned}
$$

Therefore, the matrix is positive semidefinite as required.

By Lemma 6.2, $x^{\top} P^{\top} P x+2 p^{\top} x \leq 2 t$ is equivalent to

$$
\left(\begin{array}{cc}
2 t-2 p^{\top} x & (P x)^{\top} \\
P x & I
\end{array}\right) \succeq 0 .
$$

Finally, we have shown that (QP) is equivalent to the following optimization problem.

$$
\begin{aligned}
\operatorname{minimize} & t \\
\text { subject to } & \operatorname{Diag}(A x-b) \succeq 0 \\
& \left(\begin{array}{cc}
2 t-2 p^{\top} x & (P x)^{\top} \\
P x & I
\end{array}\right) \succeq 0 .
\end{aligned}
$$

4 Conic programming

Recall that a linear program (LP) is an optimization problem with a linear objective and a system of linear inequality constraints, as follows.

$$
\begin{align*}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \geq b \tag{LP}
\end{align*}
$$

Here, if the rows of A are $a_{1}^{\top}, \ldots, a_{n}^{\top}$ and the components of b are b_{1}, \ldots, b_{n}, then the linear system $A x \geq b$ consists of linear inequality constraints $a_{1}^{\top} x \geq b_{1}, \ldots, a_{n}^{\top} x \geq b_{n}$. Note that $A x$ itself is a column vector whose components are $a_{1}^{\top} x, \ldots, a_{n}^{\top} x$. Basically, the arithmetic " \geq " compares two column vectors $A x$ and b coordinatewise.
$A x \geq b$ is equivalent to $A x-b \geq 0$, which means that each component of the column vector $A x-b$ is nonnegative. We know that \mathbb{R}_{+}^{n} is the nonnegative orthant, that is, the set of vectors all whose coordinates are nonnegative. Hence, $A x-b \geq 0$ is equivalent to \mathbb{R}_{+}^{n}. Then the following is an equivalent expression for the above linear program.

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x-b \in \mathbb{R}_{+}^{n} .
\end{aligned}
$$

Let us take a closer look at the nonnegative orthant \mathbb{R}_{+}^{n}. It satisfies the following properties.

1. \mathbb{R}_{+}^{n} is a convex cone.
2. \mathbb{R}_{+}^{n} is pointed, which means that if $v \in \mathbb{R}_{+}^{n}$ and $-v \in \mathbb{R}_{+}^{n}$, then it must be that $v=0$.

In fact, \mathbb{R}_{+}^{n} is not just a pointed convex cone. There are other important properties of \mathbb{R}_{+}^{n}.
3. \mathbb{R}_{+}^{n} is closed, which means that for any convergent sequence $\left\{v^{n}\right\}_{n \in \mathbb{N}}$ contained in \mathbb{R}_{+}^{n}, its limit $\lim _{n \rightarrow \infty} v^{n}$ also belongs to \mathbb{R}_{+}^{n}.
4. \mathbb{R}_{+}^{n} has a nonempty interior. Equivalently, \mathbb{R}_{+}^{n} contains an interior point. A vector v is an interior point of a set K if there exists an open ball around v which is fully contained in K. Then the interior of a set K, denoted $\operatorname{int}(K)$, is defined as the set of all its interior points. The interior of \mathbb{R}_{+}^{n} is \mathbb{R}_{++}^{n}, the positive orthant.

In summary, the nonnegative orthant \mathbb{R}_{+}^{n} is a pointed and closed convex cone with a nonempty interior. In fact, there are other closed convex cones that are pointed and have a nonempty interior. For example,

- The Lorentz cone.

$$
\left\{\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)^{\top} \in \mathbb{R}^{n}:\left\|\left(x_{1}, \ldots, x_{n-1}\right)^{\top}\right\|_{2} \leq x_{n}\right\}
$$

Other equivalent names include the second-order cone, the ice-cream cone, and the ℓ_{2}-norm cone. Its interior is given by

$$
\left\{\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)^{\top} \in \mathbb{R}^{n}:\left\|\left(x_{1}, \ldots, x_{n-1}\right)^{\top}\right\|_{2}<x_{n}\right\} .
$$

- The positive semidefinite cone.

$$
\left\{S \in \mathbb{S}^{d}: x^{\top} S x \geq 0 \text { for all } x \in \mathbb{R}^{d}\right\} .
$$

Its interior is the positive definite cone, the set of all positive definite matrices.
A conic program is an optimization problem defined with a pointed and closed convex cone K with a nonempty interior, as follows.

$$
\begin{align*}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x-b \in K \tag{CP}
\end{align*}
$$

Again, when $K=\mathbb{R}_{+}^{n}$, the problem reduces to a linear program. As we use the arithmetic " \geq " to indicate that a vector belongs to \mathbb{R}_{+}^{n}, we use notation " \geq_{K} " to indicate that a vector belongs to cone K. Basically, $A x-b \in K$ is equivalent to $A x-b \geq_{K} 0$ and $A x \geq_{K} b$.
Example 6.3. When K is the second-order cone, the conic program (CP) is referred to as a secondorder cone program. When K is the positive semidefinite cone, (CP) is a semidefinite program.

5 Conic duality

We know that the dual of the linear program (LP) is given by

$$
\begin{align*}
\operatorname{maximize} & b^{\top} y \\
\text { subject to } & A^{\top} y=c \tag{dual-LP}\\
& y \geq 0
\end{align*}
$$

Let us see how to derive the dual! Note that for any $y \geq 0$ (or $y \in \mathbb{R}_{+}^{n}$) and system $A x \geq b$, we have $y^{\top}(A x-b) \geq 0$ because $y \geq 0$ and $A x-b \geq 0$. Then it follows that

$$
y^{\top} A x \geq y^{\top} b .
$$

If y further satisfies

$$
A^{\top} y=c
$$

then we have

$$
y^{\top} A x=c^{\top} x \geq y^{\top} b=b^{\top} y .
$$

In summary, if we take $x \in \mathbb{R}^{d}$ satisfying $A x \geq b$ and $y \in \mathbb{R}^{n}$ with $y \geq 0$ and $A^{\top} y=c$, then $c^{\top} x$ is always lower bounded by $b^{\top} y$. Then we can try to find the best possible lower bound by maximizing the value of $b^{\top} y$, which is precisely what (dual-LP) does!
Following the basic idea behind obtaining the dual linear program, we may obtain and define the dual of the conic program (CP). The dual cone of $K \subseteq \mathbb{R}^{n}$ is defined as

$$
K^{*}=\left\{y \in \mathbb{R}^{n}: y^{\top} x \geq 0 \quad \forall x \in K\right\} .
$$

The dual cone of the nonnegative orthant \mathbb{R}_{+}^{d} is \mathbb{R}_{+}^{d} itself.

Example 6.4. The dual cone of the positive semidefinite cone \mathbb{S}_{+}^{d} is given by

$$
\left\{X \in \mathbb{R}^{d \times d}: \operatorname{tr}\left(X^{\top} S\right)=\sum_{i=1}^{d} \sum_{j=1}^{d} X_{i j} S_{i j} \geq 0 \quad \forall S \in \mathbb{S}_{+}^{d}\right\}
$$

In fact, the positive semidefinite cone \mathbb{S}_{+}^{d} is self-dual, meaning that its dual cone is itself.
Theorem 6.5 (See Theorem 2.3.1 in [BTN01]). Let K be a pointed and closed convex cone with nonempty interior. Then its dual cone K^{*} is also a pointed and closed convex cone with nonempty interior. Moreover, $\left(K^{*}\right)^{*}=K$.

Let us see how to derive and define the dual of the conic program!
(1) Take x such that $A x-b \in K$ and $y \in K^{*}$. Then $y^{\top}(A x-b) \geq 0$, and therefore,

$$
y^{\top} A x \geq y^{\top} b
$$

(2) If $y \in K^{*}$ further satisfies $A^{\top} y=c$, then

$$
c^{\top} x=y^{\top} A x \geq y^{\top} b=b^{\top} y
$$

(3) Then

$$
\begin{align*}
\operatorname{maximize} & b^{\top} y \\
\text { subject to } & A^{\top} y=c \tag{dual-CP}\\
& y \in K^{*}
\end{align*}
$$

provides a lower bound on the value of (CP). Here, (dual-CP) is the dual conic program of (CP).

Taking the dual of a maximization problem is similar; the dual will give an upper bound on the problem.

Example 6.6. We consider the following semidefinite program.

$$
\begin{aligned}
\operatorname{maximize} & \sum_{\ell=1}^{m} b_{\ell} y_{\ell} \\
\text { subject to } & \sum_{\ell=1}^{m} y_{\ell} A_{\ell} \preceq C
\end{aligned}
$$

To obtain its dual, we take a positive semidefinite matrix X. As the positive semidefinite cone \mathbb{S}_{+}^{d} is self-dual, it follows that

$$
\operatorname{tr}\left(X^{\top}\left(C-\sum_{\ell=1}^{m} y_{\ell} A_{\ell}\right)\right)=\operatorname{tr}\left(C^{\top} X\right)-\sum_{\ell=1}^{m} y_{\ell} \cdot \operatorname{tr}\left(\left(A_{\ell}\right)^{\top} X\right) \geq 0
$$

If X satisfies

$$
\operatorname{tr}\left(\left(A_{\ell}\right)^{\top} X\right)=b_{\ell} \quad \text { for } \ell=1, \ldots, m
$$

then

$$
\operatorname{tr}\left(C^{\top} X\right) \geq \sum_{\ell=1}^{m} y_{\ell} \cdot \operatorname{tr}\left(\left(A_{\ell}\right)^{\top} X\right)=\sum_{\ell=1}^{m} b_{\ell} y_{\ell} .
$$

This means that

$$
\begin{aligned}
\operatorname{minimize} & \operatorname{tr}\left(C^{\top} X\right) \\
\text { subject to } & \operatorname{tr}\left(\left(A_{\ell}\right)^{\top} X\right)=b_{\ell} \quad \text { for } \ell=1, \ldots, m \\
& X \succeq 0
\end{aligned}
$$

provides an upper bound on the first semidefinite program.

References

[BTN01] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Optimization. Society for Industrial and Applied Mathematics, 2001. 6.5

