
IE 539: Convex Optimization KAIST, Fall 2023
Lecture #4: convex optimization problems I September 6, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we consider

• Operations preserving convexity,

• Introduction to convex optimization,

• Applications (Portfolio optimization, Uncertainty quantification, Support vector machine)

2 Operations preserving convexity

For many problems, it is important to recognize underlying convex structures. We can determine
whether certain sets and functions are convex by understanding basic rules. Moreover, based on
these rules, we can build complex convex sets and functions from simpler ones.

2.1 Set operations

We first consider set operations that preserve convexity.

• Intersection: The intersection of any (possibly infinite) collection of covex sets is convex.

• Scaling: Given a convex set C and α ∈ R,

αC = {αx : x ∈ C}.

• Minkowski sum: Given convex sets Ci ⊆ Rd for i = 1, . . . , k, the Minkowski sum of them,
defined by

C1 + · · ·+ Ck = {x1 + · · ·+ xk : xi ∈ Ci for i = 1, . . . , k}

is convex.

• Cartesian Product: Given convex sets Ci ⊆ Rdi for i = 1, . . . , k, the Cartesian product of
them, defined by

C1 × · · · × Ck = {(x1, . . . , xk) ∈ Rd1 × · · · × Rdk : xi ∈ Ci for i = 1, . . . , k}

is convex.

• Affine image: Given a convex set C and matrices A ∈ Rp×d, b ∈ Rp, we define an affine
mapping f(x) = Ax+ b : Rd → Rp. Then

f(C) = {Ax+ b : x ∈ C}.

• Inverse affine image: Given a convex set C and matrices A ∈ Rp×d, b ∈ Rp, we define an
affine mapping f(x) = Ax+ b : Rd → Rp. Then

f−1(C) = {x : Ax+ b ∈ C}.
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2.2 Function operations

We next consider function operations preserving convexity.

• Nonnegative weighted sum: Let f1, . . . , fk : Rd → R be convex functions. Then for any
α1, . . . , αk ≥ 0,

α1f1 + · · ·+ αkfk

is convex.

• Maximum of arbitrary collection of convex functions: Let {fγ}γ∈Γ be a collection of convex
functions. Then maxγ∈Γ fγ is also convex. Here, Γ may be infinite.

• Minimizing out variables: Let g(x, y) be convex function in (x, y). Define f by f(x) =
infy∈C g(x, y) for some convex set C. Then f is convex.

• Perspective function: Let g(x) be a convex function. Then f(x, t) = tg(x/t) is a convex
function in (x, t) ∈ Rd × R++. Here, f is called the perspective of g.

• Affine composition: Let g : Rp → R be a convex function, and take matrices A ∈ Rp×d,
b ∈ Rp. Then f : Rd → R defined by f(x) = g(Ax+ b) is convex.

• Compositions: Let h : R → R be a univariate non-decreasing convex function, and let g :
Rd → R be convex. Then f = h ◦ g is convex.

Example 4.1. Let C be an arbitrary set of locations. Note that

f1(x) = max
y∈C
||x− y||

measures the longest distance from x to a location in C, and

f2(x) = min
y∈C
‖x− y‖

measures the shortest distance from x to a location in C. Let us show that both f1 and f2 are
convex. Observe first that

g(x, y) = ‖x− y‖

is convex in x and y. Then f1 is convex as it is the pointwise maximum of some convex functions.
Furthermore, if C is convex, then f2 is convex because it is a partial minimization of a convex
function. In summary, f1 is convex regardless of whether C is convex or not, while f2 is convex if
the set C is convex.

3 Convex optimization problem

3.1 Basic optimization terminologies

Given a function f : Rd → R and a set C ⊆ Rd, we want to solve

minimize f(x)

subject to x ∈ C.
(P )

Terminology 1:
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• x is called the decision vector, and the components of x are called the decision variables. For
example, decision variables capture how much to invest for a financial portfolio or where to
build a hospital in a village.

• f is called the objective function or cost function. For example, the cost of a production plan.

• C is called the domain, feasible region, or constraint set. For example, production capacities,
budget constraints.

Terminology 2:

• Any vector x ∈ C is called a feasible solution

• We say that (P ) is feasible if C 6= ∅. Otherwise, (P ) is infeasible.

• If there exists x ∈ C such that f(x) ≤ r for any r ∈ R, then (P ) is unbounded.

• If there exists some r ∈ R such that f(x) ≥ r for all x ∈ C, then (P ) is bounded.

Example 4.2. When C = {(x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 1, x1 + x2 ≥ 2}, then the problem is
infeasible. When f(x) = (x− 2)2 and C = [−1, 5], then the problem is feasible and bounded.

Terminology 3:

• OPT := minx∈C f(x) is the optimal value of the optimization problem. Then

OPT =


+∞, if infeasible,

−∞, if feasible but unbounded,

finite, if feasible and bounded.

• A solution x∗ ∈ C such that f(x∗) = OPT is called an optimal solution.

• We say that (P ) is solvable if an optimal solution exists. If not, (P ) is unsolvable.

Example 4.3. When f(x) = (x − 2)2 and C = (3, 5], the problem is feasible and bounded but
unsolvable.

3.2 Convex optimization

When the objective function f is convex and the feasible region is a convex set, then the optimization
problem (P ) is referred to as a convex optimization or convex minimization problem. By using the
indicator function for C, we can rewrite (P ) as

minimize f(x)

subject to IC(x) ≤ 0

or
minimize f(x) + IC(x).

Here, f , IC , and f + IC are all convex. The standard form of a convex optimization problem is

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . , p,

hi(x) = 0, i = 1, . . . , q

(P ′)

where
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• the objective function f is convex,

• the inequality constraint functions g1, . . . , gp are convex, and

• the equality constraint functions h1, . . . , hq are affine.

Exercise 4.4. If g1, . . . , gp are convex and h1, . . . , hq are affine functions, C := {x ∈ Rd : gi(x) ≤
0 for i = 1, . . . , p, hi(x) = 0 for j = 1, . . . , q} is a convex set.

Note that
min
x∈C

f(x) = (−1)×max
x∈C

−f(x)

and −f is concave when f is convex. Therefore, the problem of maximizing a concave function
over a convex domain is also a convex optimization problem.

4 Convex optimization applications

4.1 Portfolio optimization

Given d financial assets (stocks, bonds, etc), we want to allocate xi fraction of our budget to asset
i ∈ [d]. Hence, we impose condition

1>x = 1.

Here, xi < 0 indicates a short position, which means borrowing shares, selling now, and returning
the shares later, while xi ≥ 0 indicates a long position, buying shares now. Then ‖x‖1 =

∑d
i=1 |xi|

means leverage.

Let pi be the initial price of asset i, and p′i be its price at the end of one period. Then the return
of asset i can be defined as

ri := (p′i − pi)/pi.

Moreover, the return of my portfolio can be measured by r>x. Here, r is a random variable with
mean µ and covariance Σ. Then it follows that

E
[
r>x

]
= µ>x

Var
[
r>x

]
= x>Σx

In words, the expected return, which is the expectation of the return r>x, is given by µ>x. More-
over, the risk of my portfolio, which is often defined by the variance of the return r>x, is given by
x>Σx. By definition, the covariance matrix is positive semidefinite.

We want to find a portfolio that maximizes the expected return while guaranteeing a low risk.
Then we consider

maximize µ>x− γx>Σx

subject to 1>x = 1,

x ∈ C ′

where γ > 0 is the risk aversion parameter. When C ′ = Rd+, we take long positions only. When
C ′ = {x ∈ Rd : ‖x‖1 ≤ B}, then we allow short positions but there is a leverage limit.
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4.2 Uncertainty quantification

Suppose we have chosen a portfolio x. To avoid high risk portfolios, can we measure the worst-case
variance of the given portfolio? In practice, the covariance matrix Σ is estimated through data,
so it is subject to errors. Given a magnitude ε of potential errors, what is the highest risk of the
portfolio?

maximize x>(Σ + S)x

subject to S � 0,

‖S‖nuc ≤ ε

where ‖S‖nuc denotes the nuclear norm of S, defined as the sum of all eigenvalues of S. Is this
problem convex?

4.3 Support vector machine

Given n data (x1, y1), . . . , (xn, yn) where yi ∈ {−1, 1} are labels, we want to find a separating
hyperplane

w>x = b

to classify data with +1 and data with −1. The goal is to find a separating hyperplane w>x = b
with the “gap” (1/‖w‖2) being maximized. Then the problem can be formulated as

minimize ‖w‖2
subject to yi(w

>xi − b) ≥ 0, i = 1, . . . , n.

If this problem is feasible, then x→ sign(w>xi − b) is a valid classifier for the data set.

What if the data set is not entirely separable? What if no hyperplane separates the data without an
error? In such cases, we force separation via a penalty term, instead of imposing hard constraints.
The number of misclassifications can be used as penalty. Namely,

n∑
i=1

1(yi 6= sign(w>xi − b)).

However, this is not convex. Instead, we apply the hinge loss1, which is an upper bound on the
number of misclassifications, given by

n∑
i=1

max{0, 1− yi(w>xi − b)}.

Then we solve

min
w,b

λ‖w‖22 +
1

n

n∑
i=1

max{0, 1− yi(w>xi − b)}

where λ determines the trade-off between the margin size and the penalty.

1Here, max{0, a} is called the hinge function.
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