IE 539: Convex Optimization KAIST, Fall 2023
Lecture #3: convex functions September 4, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

Convex functions and properties

Epigraphs.

First-order and second-order characterizations of convex functions.

Operations preserving convexity

2 Convex functions
2.1 Definition

Definition 3.1. A function f : RY — R is conver if the domain, denoted dom(f), is convex and
for all =,y € dom(f), we have

fOz+ (1 =Ny) <Af(2)+ (1 -A)f(y) for0<A<L

In words, function f evaluated at a point between z and y lies below the line segment joining f(x)

and f(y).

(v,f(y))

Figure 3.1: Illustration of a convex function in R?

Definition 3.2. We say that f : R — R is concave if —f is convex.

Definition 3.3. A function f : R - R is

o strictly convex if dom(f) is convex and for any distinct x,y € dom(f), we have

fAz+ 1 =XNy) <Af(x)+ (1 —=XN)f(y) for0< <1

e strongly conver if f(z) — af|z||? is convex for some a > 0 and norm || - ||.

Note that strong convexity implies strict convexity, and strict convexity implies convexity.
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2.2 Examples
Univariate functions (on R)

e Exponential function: e** for any a € R.

e Power function: z% for a > 1 over Ry and z® for a < 0 over R .

% for 0 < a < 1 over Ry is concave.
e Logarithm: logz is concave on Ry .

e Negative entropy: zlogxz on R ;.
Multivariate functions (on R?)

e Linear function: a'x 4 b where a € R? and b € R are both convex and concave.

e Quadratic function: %xT/m +b'z + ¢ where A =0, b € R? and ¢ € R.

e Least squares loss: ||b — Az||3 for any A.

e Norm: Any norm || - || is concex, because a norm is subadditive and homogeneous.
e Maximum eigenvalue of a symmetric matrix.

e Indicator function: When C' is convex, its indicator function, given by,
0, zeC
Io(z) = {
oo, z¢C
is convex.

e Support function: Given a convex set (', its support function is defined as

I5(z) = sup {yTw}-

e Conjugate function: Given an arbitrary function f : R? — R, the conjugate function f* is
defined as

fH@) = sup {yTe— f(y)}-

yeR4
2.3 Properties of convex functions

Definition 3.4. The epigraph of a function f : R* — R is defined as
epi(f) = {(z,t) € dom(f) x R: f(z) <t}.

The following is another definition of convex functions with respect to the epigraph.
Exercise 3.5. Prove that f is a convex function if and only if the epigraph is a convex set.

Example 3.6. Recall that the norm cone {(z,t) € R xR : ||z|| <t} is a convex cone. This implies
that any norm f(z) = ||z|| is a convex function.

Remark 3.7. A level set of a function f : R* — R is defined as
{w € dom(f): f(z) < a}

for any o € R. If f is convex, then all level sets are covex. However, the converse does not hold as
Figure 3.2 demonstrates.



\ [/ /1 / /
[/

Figure 3.2: Convex level sets from a nonconvex function

3 First-order and second-order characterizations of convex func-
tions

The following results provides a first-order characterization of convex functions.

Theorem 3.8. Let f : R? — R be a differentiable function. Then f is convex if and only if dom(f)
is convex and

fly) = f(z)+ V(x) (y— )
for all x,y € dom(f).

(x,1(x))
Figure 3.3: Illustration of the first-order characterization

Proof. (=) We first consider the d = 1 case. If f is convex, then for any z,y € dom(f) and
A€ (0,1],

fl@+ My —2)) = (1 =Nz +Ay) < (1 =N)f(@)+Af(y)
Moving the (1 — ) f(z) term to the other side and dividing each side by A, we obtain

Fla+ My =) = f(z)

F) > f) + .
Then \
1) > fa) + Jim TEIXCZDZIC ) 0y

as f is differentiable and thus the limit exists.
Now we consider the general case. We define a function g over A € [0, 1] as follows.
9(A) = flz + Ay — 2)).

Here, we can argue that if f is convex, then g is convex. More precisely, we have for « € [0, 1] and
A1, Ao € [O, 1],
gladr + (1 —a)rg) = f(z + (A1 + (1 — a)A2)(y — x))
= fla(z+ My —2)) + (1 —a)(z+ Ay —z)))
<af(z+Xly—=z)+ 1 —a)f(z+ Ay —2)).
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Moreover, g is differentiable as
gdN) =—2)"Vf@+Ay— ).
By the d = 1 case, g(1) > g(0) 4+ ¢/(0), which implies that f(y) > f(z) + Vf(2)" (y — ).
(<) Let z,y € dom(f) and A € [0,1]. Take z = Az + (1 — A)y. Then
F@) 2 f(2) + V() (@ —2), [(y) 2 f(2)+ V() (y—a).

Multiplying the first and second by A and (1—\), respectively, and adding the resulting inequalities,
it follows that

M(@) + (1 =Nfy) > f(2) + V=) QAo+ (1= Ny —2) = fQz+ (1 - Ny),
so f is convex. O
What follows is another first-order characterization.

Theorem 3.9. Let f : R* — R be a differentiable function. Then f is convex if and only if dom(f)
s conver and

(Vi) =VfQy),z—-y) 20
for all z,y € dom(f).

Proof. (=) By Theorem 3.8, we have
F) = f@) + V@) (y—2), f@)=fy)+ Vi) (@-y).
Add these two to obtain (Vf(z) — Vf(y))" (z —y) > 0.

(<) By the fundamental theorem of calculus, we obtain

[ vrea- o) w-nir= [ (S aw-a) o

= o+ Aly — =)
= fy) — f(=).

Moreover, for any A > 0, we have

1
Vi@+My =) (y—2) = Vi@ (y—2) = (Vi@ + My —2) - V@), Ay —2)) >0,
implying in turn that
Vi+ My —a) (y—=z) > Vi) (y—2)
for any A > 0. Note that this inequality trivially holds when A = 0. Therefore,
1
F0) = £@) = [ VHa My =) (= a)dh > V(@) (- 2).

Then f is convex by Theorem 3.8. O
Next, we consider the second-order characterization.
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Theorem 3.10. Let f : R — R be a twice differentiable function'. Then f is convex if and only
if dom(f) is convex and

V2f(x) = 0.
for all x € dom(f).

Proof. (=) We first consider the d = 1 case. By Theorem 3.8, we have f(z) > f(y) + f'(y)(x — v)
and f(y) > f(z) + f'(z)(y — x). Adding these up and dividing each side by (y — z)?, we obtain

/ o
fy) = @)
y—
Taking the limit as y — z, we obtain f”(z) > 0.

Next, let us consider the general case. Let x € dom(f) and v € R%. As dom(f) is open, we have
a sufficiently small € > 0 such that x + A\v € dom(f) for any A € (—e,€). Let us define g over
A € (—e¢,€) as follows.

9(\) = f(z + Av).
Since f is convex, g is also convex. Note that
d(\) =v'Vf(z+ )

and that
gd"\) = v V2f(z + \v)v.

By the d =1 case,
g"(0) =v"V2f(x)v > 0.

Therefore, we have proved that V2 f(z) is positive semidefinite.

(<) By the fundamental theorem of calculus, we obtain

/Ol(y — )TV (5 + My — 2))dA = /01 (CZ\Vf(x Ay - x))) ax
= ViAo,
= Vfy) = Vf(z).

Then

1
(VF) — Vi(e)y —a) = /0 (y— 1) V2 (z + Ay — 2))(y — 2)dA > 0

where the inequality follows because V2 f is positive semidefinite. Then f is convex by Theorem 3.9.
O

1V?2f exists at any point in dom(f), and dom(f) is open.
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