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1 Outline

In this lecture, we study

• Convex functions and properties

• Epigraphs.

• First-order and second-order characterizations of convex functions.

• Operations preserving convexity

2 Convex functions

2.1 Definition

Definition 3.1. A function f : Rd → R is convex if the domain, denoted dom(f), is convex and
for all x, y ∈ dom(f), we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for 0 ≤ λ ≤ 1.

In words, function f evaluated at a point between x and y lies below the line segment joining f(x)
and f(y).

Figure 3.1: Illustration of a convex function in R2

Definition 3.2. We say that f : Rd → R is concave if −f is convex.

Definition 3.3. A function f : Rd → R is

• strictly convex if dom(f) is convex and for any distinct x, y ∈ dom(f), we have

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y) for 0 < λ < 1.

• strongly convex if f(x)− α∥x∥2 is convex for some α > 0 and norm ∥ · ∥.

Note that strong convexity implies strict convexity, and strict convexity implies convexity.
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2.2 Examples

Univariate functions (on R)

• Exponential function: eax for any a ∈ R.

• Power function: xa for a ≥ 1 over R+ and xa for a < 0 over R++.

xa for 0 ≤ a < 1 over R+ is concave.

• Logarithm: log x is concave on R++.

• Negative entropy: x log x on R++.

Multivariate functions (on Rd)

• Linear function: a⊤x+ b where a ∈ Rd and b ∈ R are both convex and concave.

• Quadratic function: 1
2x

⊤Ax+ b⊤x+ c where A ⪰ 0, b ∈ Rd, and c ∈ R.

• Least squares loss: ∥b−Ax∥22 for any A.

• Norm: Any norm ∥ · ∥ is concex, because a norm is subadditive and homogeneous.

• Maximum eigenvalue of a symmetric matrix.

• Indicator function: When C is convex, its indicator function, given by,

IC(x) =

{
0, x ∈ C

∞, x /∈ C

is convex.

• Support function: Given a convex set C, its support function is defined as

I∗C(x) = sup
y∈C

{
y⊤x

}
.

• Conjugate function: Given an arbitrary function f : Rd → R, the conjugate function f∗ is
defined as

f∗(x) = sup
y∈Rd

{
y⊤x− f(y)

}
.

2.3 Properties of convex functions

Definition 3.4. The epigraph of a function f : Rd → R is defined as

epi(f) = {(x, t) ∈ dom(f)× R : f(x) ≤ t}.

The following is another definition of convex functions with respect to the epigraph.

Exercise 3.5. Prove that f is a convex function if and only if the epigraph is a convex set.

Example 3.6. Recall that the norm cone {(x, t) ∈ Rd×R : ∥x∥ ≤ t} is a convex cone. This implies
that any norm f(x) = ∥x∥ is a convex function.

Remark 3.7. A level set of a function f : Rd → R is defined as

{x ∈ dom(f) : f(x) ≤ α}
for any α ∈ R. If f is convex, then all level sets are covex. However, the converse does not hold as
Figure 3.2 demonstrates.
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Figure 3.2: Convex level sets from a nonconvex function

3 First-order and second-order characterizations of convex func-
tions

The following results provides a first-order characterization of convex functions.

Theorem 3.8. Let f : Rd → R be a differentiable function. Then f is convex if and only if dom(f)
is convex and

f(y) ≥ f(x) +∇f(x)⊤(y − x)

for all x, y ∈ dom(f).

Figure 3.3: Illustration of the first-order characterization

Proof. (⇒) We first consider the d = 1 case. If f is convex, then for any x, y ∈ dom(f) and
λ ∈ (0, 1],

f(x+ λ(y − x)) = f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

Moving the (1− λ)f(x) term to the other side and dividing each side by λ, we obtain

f(y) ≥ f(x) +
f(x+ λ(y − x))− f(x)

λ
.

Then

f(y) ≥ f(x) + lim
λ→0+

f(x+ λ(y − x))− f(x)

λ
= f(x) + (y − x)f ′(x)

as f is differentiable and thus the limit exists.

Now we consider the general case. We define a function g over λ ∈ [0, 1] as follows.

g(λ) := f(x+ λ(y − x)).

Here, we can argue that if f is convex, then g is convex. More precisely, we have for α ∈ [0, 1] and
λ1, λ2 ∈ [0, 1],

g(αλ1 + (1− α)λ2) = f(x+ (αλ1 + (1− α)λ2)(y − x))

= f(α(x+ λ1(y − x)) + (1− α)(x+ λ2(y − x)))

≤ αf(x+ λ1(y − x)) + (1− α)f(x+ λ2(y − x)).
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Moreover, g is differentiable as

g′(λ) = (y − x)⊤∇f(x+ λ(y − x)).

By the d = 1 case, g(1) ≥ g(0) + g′(0), which implies that f(y) ≥ f(x) +∇f(x)⊤(y − x).

(⇐) Let x, y ∈ dom(f) and λ ∈ [0, 1]. Take z = λx+ (1− λ)y. Then

f(x) ≥ f(z) +∇f(z)⊤(x− z), f(y) ≥ f(z) +∇f(z)⊤(y − x).

Multiplying the first and second by λ and (1−λ), respectively, and adding the resulting inequalities,
it follows that

λf(x) + (1− λ)f(y) ≥ f(z) +∇f(z)⊤(λx+ (1− λ)y − z) = f(λx+ (1− λ)y),

so f is convex.

What follows is another first-order characterization.

Theorem 3.9. Let f : Rd → R be a differentiable function. Then f is convex if and only if dom(f)
is convex and

⟨∇f(x)−∇f(y), x− y⟩ ≥ 0

for all x, y ∈ dom(f).

Proof. (⇒) By Theorem 3.8, we have

f(y) ≥ f(x) +∇f(x)⊤(y − x), f(x) ≥ f(y) +∇f(y)⊤(x− y).

Add these two to obtain (∇f(x)−∇f(y))⊤(x− y) ≥ 0.

(⇐) By the fundamental theorem of calculus, we obtain∫ 1

0
∇f(x+ λ(y − x))⊤(y − x)dλ =

∫ 1

0

(
d

dλ
f(x+ λ(y − x))

)
dλ

= f(x+ λ(y − x))
∣∣∣1
λ=0

= f(y)− f(x).

Moreover, for any λ > 0, we have

∇f(x+ λ(y − x))⊤(y − x)−∇f(x)⊤(y − x) =
1

λ
⟨∇f(x+ λ(y − x))−∇f(x), λ(y − x)⟩ ≥ 0,

implying in turn that
∇f(x+ λ(y − x))⊤(y − x) ≥ ∇f(x)⊤(y − x)

for any λ > 0. Note that this inequality trivially holds when λ = 0. Therefore,

f(y)− f(x) =

∫ 1

0
∇f(x+ λ(y − x))⊤(y − x)dλ ≥ ∇f(x)⊤(y − x).

Then f is convex by Theorem 3.8.

Next, we consider the second-order characterization.
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Theorem 3.10. Let f : Rd → R be a twice differentiable function1. Then f is convex if and only
if dom(f) is convex and

∇2f(x) ⪰ 0.

for all x ∈ dom(f).

Proof. (⇒) We first consider the d = 1 case. By Theorem 3.8, we have f(x) ≥ f(y) + f ′(y)(x− y)
and f(y) ≥ f(x) + f ′(x)(y − x). Adding these up and dividing each side by (y − x)2, we obtain

f ′(y)− f ′(x)

y − x
≥ 0.

Taking the limit as y → x, we obtain f ′′(x) ≥ 0.

Next, let us consider the general case. Let x ∈ dom(f) and v ∈ Rd. As dom(f) is open, we have
a sufficiently small ϵ > 0 such that x + λv ∈ dom(f) for any λ ∈ (−ϵ, ϵ). Let us define g over
λ ∈ (−ϵ, ϵ) as follows.

g(λ) = f(x+ λv).

Since f is convex, g is also convex. Note that

g′(λ) = v⊤∇f(x+ λv)

and that
g′′(λ) = v⊤∇2f(x+ λv)v.

By the d = 1 case,
g′′(0) = v⊤∇2f(x)v ≥ 0.

Therefore, we have proved that ∇2f(x) is positive semidefinite.

(⇐) By the fundamental theorem of calculus, we obtain∫ 1

0
(y − x)⊤∇2f(x+ λ(y − x))dλ =

∫ 1

0

(
d

dλ
∇f(x+ λ(y − x))

)
dλ

= ∇f(x+ λ(y − x))
∣∣∣1
λ=0

= ∇f(y)−∇f(x).

Then

⟨∇f(y)−∇f(x), y − x⟩ =
∫ 1

0
(y − x)⊤∇2f(x+ λ(y − x))(y − x)dλ ≥ 0

where the inequality follows because ∇2f is positive semidefinite. Then f is convex by Theorem 3.9.

1∇2f exists at any point in dom(f), and dom(f) is open.
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