1 Outline

In this lecture, we study

- the infeasible start Newton method,
- the primal-dual interior point method.

2 Infeasible start Newton method

Recall that Newton's method can be extended to solve the following equality constrained problem.

$$
\begin{align*}
\operatorname{minimize} & f(x) \tag{25.1}\\
\text { subject to } & A x=b .
\end{align*}
$$

The update rule is that given a current iterate x_{t}, we obtain

$$
x_{t+1}=x_{t}+d
$$

where d is chosen to be an optimal solution to the following.

$$
\begin{align*}
\text { minimize } & f\left(x_{t}\right)+\nabla f\left(x_{t}\right)^{\top} d+\frac{1}{2} d^{\top} \nabla^{2} f\left(x_{t}\right) d \tag{25.2}\\
\text { subject to } & A\left(x_{t}+d\right)=b
\end{align*}
$$

Remember that based on the KKT conditions, we derived a necessary and sufficient condition for d as follows.

$$
\begin{aligned}
\nabla f\left(x_{t}\right)+\nabla^{2} f\left(x_{t}\right) d+A^{\top} \mu & =0, \\
A\left(x_{t}+d\right) & =b .
\end{aligned}
$$

Subject to $A x_{t}=b$, this can be expressed as the following matrix system.

$$
\left[\begin{array}{cc}
\nabla^{2} f\left(x_{t}\right) & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
d \\
\mu
\end{array}\right]=\left[\begin{array}{c}
-\nabla f\left(x_{t}\right) \\
0
\end{array}\right] .
$$

Here is our next question. What if the current iterate x_{t} is not feasible, meaning $A x_{t} \neq b$? In this case, the corresponding matrix system for charcterizing d is

$$
\left[\begin{array}{cc}
\nabla^{2} f\left(x_{t}\right) & A^{\top} \tag{25.3}\\
A & 0
\end{array}\right]\left[\begin{array}{l}
d \\
\mu
\end{array}\right]=-\left[\begin{array}{c}
\nabla f\left(x_{t}\right) \\
A x_{t}-b
\end{array}\right] .
$$

Here, if the KKT matrix is invertible, we can deduce the desired direction d and obtain a new iterate $x_{t+1}=x_{t}+d$. This suggests that we may deal with infeasible iterates that are generated in intermediate steps. Then this raises one further question. Can we allow a sequence of infeasible
iterates? When x_{t} is infeasible and d is the associated direction with $x_{t}+d$ is feasible, instead of taking $x_{t}+d$, let us take

$$
x_{t+1}=x_{t}+\eta d
$$

for some step size η. Here, if $A d \neq 0$ and $\eta \neq 1$, then $x_{t}+\eta d$ is not feasible. Nevertheless, as mentioned before, we can proceed the algorithm regardless of the feasibility of x_{t+1}.
For the remainder of this section, we use notation Δx to replace d to emphasize that the direction is the change we make. Moreover, note that we obtain a new dual variable μ every time we solve (25.3). Here, one may record the diffrence between the current dual variable and the new dual variable. Let us denote by $\Delta \mu$ the incremental change in the dual variable. Then the KKT conditions can be rewritten as

$$
\begin{aligned}
\nabla f(x)+\nabla^{2} f(x) \Delta x+A^{\top}(\mu+\Delta \mu) & =0, \\
A(x+\Delta x) & =b .
\end{aligned}
$$

Here, Δx and $\Delta \mu$ can be found by solving

$$
\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{\top} \tag{25.4}\\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta \mu
\end{array}\right]=-\left[\begin{array}{c}
\nabla f(x)+A^{\top} \mu \\
A x-b
\end{array}\right] .
$$

This point of view suggests a primal-dual algorithm, Given a point x, our next point is given by

$$
x+\eta \Delta x .
$$

Following the update rule for the x variables, we may update the dual variable as

$$
\mu+\eta \Delta \mu
$$

where μ is the current dual variable. This is called a primal-dual method because we update both the original variable x and the dual variable μ at each iteration.
We stop the algorithm when Δx and $\Delta \mu$ become sufficiently small. This is equivalent to have

$$
r(x, \mu)=\left[\begin{array}{c}
\nabla f(x)+A^{\top} \mu \\
A x-b
\end{array}\right]=-\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta \mu
\end{array}\right]
$$

sufficiently small.

```
Algorithm 1 Infeasible start Newton method
    Initialize \(t=1, x_{1}, \mu_{1}\), an accuracy level \(\epsilon\), and parameters \(0<\alpha<1 / 2\) and \(0<\beta<1\).
    while \(A x_{t} \neq b\) or \(\left\|r\left(x_{t}, \mu_{t}\right)\right\|_{2}>\epsilon\) do
        Obtain \(\Delta x_{t}\) and \(\Delta \mu_{t}\).
        Apply backtracking line search on \(\|r\|_{2}\) with parameters \(\alpha\) and \(\beta\) as follows.
        Set \(k=1\).
        while \(\left\|r\left(x_{t}+k \Delta x_{t}, \mu_{t}+k \Delta \mu_{t}\right)\right\|_{2}>(1-k \alpha)\left\|r\left(x_{t}, \mu_{t}\right)\right\|_{2}\) do
            \(k \leftarrow \beta k\).
        end while
        Update \(x_{t+1}=x_{t}+k \Delta x_{t}\) and \(\mu_{t+1}=\mu_{t}+k \Delta \mu_{t}\).
        \(t \leftarrow t+1\).
    end while
```

Here, $r(x+\Delta x, \mu+\Delta \mu)$ can be expressed as

$$
r(x+\Delta x, \mu+\Delta \mu)=\left[\begin{array}{c}
\nabla f(x+\Delta x)+A^{\top}(\mu+\Delta \mu) \\
A(x+\Delta x)-b
\end{array}\right] \approx r(x, \mu)+\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta \mu
\end{array}\right] .
$$

Hence, computing Δx and Δy can be interpreted as trying to make $r(x+\Delta x, \mu+\Delta \mu) \approx 0$.

3 Primal-dual interior point method

In the last lecture, we learned the barrier method for solving the following constrained convex minimization problem.

$$
\begin{align*}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, \quad i=1, \ldots, m, \tag{25.5}\\
& A x=b
\end{align*}
$$

For the barrier method, we used the log-barrier function given by

$$
\psi(x)=-\sum_{i=1}^{m} \log \left(-g_{i}(x)\right) .
$$

Then by solving

$$
\begin{align*}
\operatorname{minimize} & f(x)+\frac{1}{t} \psi(x) \tag{25.6}\\
\text { subject to } & A x=b
\end{align*}
$$

for $t>0$, we compute an optimal solution $x^{\star}(t)$ for each t and construct the central path $\left\{x^{\star}(t)\right.$: $t>0\}$. Moreover, we deduced the associated dual variables $\lambda_{i}^{\star}(t)$ and $\mu^{\star}(t)$ defined as

$$
\lambda_{i}^{\star}(t)=-\frac{1}{t \cdot g_{i}\left(x^{\star}(t)\right)}, \quad i=1, \ldots, m, \quad \mu^{\star}(t)=\frac{\mu^{\star}}{t} .
$$

We also saw that $(x, \lambda, \mu)=\left(x^{\star}(t), \lambda^{\star}(t), \mu^{\star}(t)\right)$ satisfies the perturbed KKT conditions given by

$$
\begin{align*}
\nabla f(x)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}(x)+A^{\top} \mu & =0 \\
\lambda_{i} g_{i}(x) & =-\frac{1}{t}, \quad i=1, \ldots, m \tag{25.7}\\
g_{i}(x) & \leq 0, \quad i=1, \ldots, m \\
A x & =b, \\
\lambda_{i} & \geq 0, \quad i=1, \ldots, m
\end{align*}
$$

In this section, we will develop primal-dual methods for solving (25.5) based on the perturbed KKT conditions given in (25.7).

3.1 Primal-dual interpretation for the barrier method

For the barrier method, we have the condition that

$$
\lambda_{i}=-\frac{1}{t g_{i}(x)}, \quad i=1, \ldots, m .
$$

Plugging in this to (25.7), we deduce

$$
\begin{aligned}
\nabla f(x)-\frac{1}{t} \sum_{i=1}^{m} \frac{1}{g_{i}(x)} \nabla g_{i}(x)+A^{\top} \mu & =0, \\
A x-b & =0 .
\end{aligned}
$$

The barrier method solves (25.6) with the objective function.

$$
h(x)=f(x)-\frac{1}{t} \sum_{i=1} \log \left(-g_{i}(x)\right) .
$$

Note that the perturbed KKT conditions are nothing but

$$
\begin{array}{r}
\nabla h(x)+A^{\top} \mu=0, \\
A x-b=0
\end{array}
$$

because

$$
\nabla h(x)=\nabla f(x)-\frac{1}{t} \sum_{i=1}^{m} \frac{1}{g_{i}(x)} \nabla g_{i}(x) .
$$

In fact, this system comes up for the infeasible start Newton method. When we apply the infeasible start Newton method to solve (25.6), we proceed with the system

$$
\left[\begin{array}{cc}
\nabla^{2} h(x) & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta \mu
\end{array}\right]=-\left[\begin{array}{c}
\nabla h(x)+A^{\top} \mu \\
A x-b
\end{array}\right] .
$$

Here, $\nabla^{2} h(x)$ is given by

$$
\nabla^{2} h(x)=\nabla^{2} f(x)+\frac{1}{t} \sum_{i=1}^{m} \frac{1}{g_{i}(x)^{2}} \nabla g_{i}(x) \nabla g_{i}(x)^{\top}-\frac{1}{t} \sum_{i=1}^{m} \frac{1}{g_{i}(x)} \nabla^{2} g_{i}(x) .
$$

Basically, the perturbed KKT conditions characterize (x, μ) satisfying

$$
r(x, \mu)=\left[\begin{array}{c}
\nabla h(x)+A^{\top} \mu \\
A x-b
\end{array}\right]=0 .
$$

The infeasible start Newton method tries to find a pair (x, μ) with $r(x, \mu)$. As we mentioned, before the infeasible start Newton method is a primal-dual algorithm. Therefore, the barrier method with the infeasible start Newton method can be interpreted as a primal-dual method.

3.2 Primal-dual method by the perturbed KKT conditions

In the previous subsection, we observed that the perturbed KKT conditions with λ removed based on the barrier method leads to a primal-dual algorithm. In fact, we may design another primal-dual algorithm based on the perturbed KKT conditions (25.7) without removing the λ variables.
Let us use notations $g(x)$ and $D g(x)$ to denote

$$
g(x)=\left[\begin{array}{c}
g_{1}(x) \\
\vdots \\
g_{m}(x)
\end{array}\right], \quad D g(x)=\left[\begin{array}{c}
\nabla g_{1}(x)^{\top} \\
\vdots \\
\nabla g_{m}(x)^{\top}
\end{array}\right] .
$$

Then the equality conditions in (25.7) can be written as

$$
\begin{array}{r}
\nabla f(x)+D g(x)^{\top} \lambda+A^{\top} \mu=0, \\
-\operatorname{Diag}(\lambda) g(x)-\frac{1}{t} \mathbf{1}=0, \tag{25.8}\\
A x-b=0
\end{array}
$$

where 1 denotes the vector of all ones and $\operatorname{Diag}(v)$ denotes the diagonal matrix whose diagonal entries are given by the components of vector v. Then we define $r(x, \lambda, \mu)$ as

$$
r(x, \lambda, \mu)=\left[\begin{array}{c}
r_{\text {dual }}(x, \lambda, \mu) \\
r_{\text {central }}(x, \lambda, \mu) \\
r_{\text {primal }}(x, \lambda, \mu)
\end{array}\right]=\left[\begin{array}{c}
\nabla f(x)+D g(x)^{\top} \lambda+A^{\top} \mu \\
-\operatorname{Diag}(\lambda) g(x)-\frac{1}{t} \mathbf{1} \\
A x-b
\end{array}\right] .
$$

A primal-dual method would seek to update (x, λ, μ) as follows.

$$
x \rightarrow x+\eta \Delta x, \quad \lambda \rightarrow \lambda+\eta \Delta \lambda, \quad \mu \rightarrow \mu+\eta \Delta \mu .
$$

How do we find the increments $\Delta x, \Delta \lambda$, and $\Delta \mu$? Note that

$$
\begin{aligned}
& r(x+\Delta x, \lambda+\Delta \lambda, \mu+\Delta \mu) \\
& =\left[\begin{array}{c}
\nabla f(x+\Delta x)+D g(x+\Delta x)^{\top}(\lambda+\Delta \lambda)+A^{\top}(\mu+\Delta \mu) \\
-\operatorname{Diag}(\lambda+\Delta \lambda) g(x+\Delta x)-\frac{1}{t} \mathbf{1} \\
A(x+\Delta x)-b
\end{array}\right] \\
& \approx r(x, \lambda, \mu)+\left[\begin{array}{ccc}
\nabla^{2} f(x)+\sum_{i=1}^{m} \lambda_{i} \nabla^{2} g_{i}(x) & D g(x)^{\top} & A^{\top} \\
-\operatorname{Diag}(\lambda) D g(x) & -\operatorname{Diag}(g(x)) & 0 \\
A & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta \lambda \\
\Delta \mu
\end{array}\right]
\end{aligned}
$$

Basically, we find $(\Delta x, \Delta \lambda, \Delta \mu)$ so that $r(x+\Delta x, \lambda+\Delta \lambda, \mu+\Delta \mu) \approx 0$. We may achieve this by solving

$$
\left[\begin{array}{ccc}
\nabla^{2} f(x)+\sum_{i=1}^{m} \lambda_{i} \nabla^{2} g_{i}(x) & D g(x)^{\top} & A^{\top} \\
-\operatorname{Diag}(\lambda) D g(x) & -\operatorname{Diag}(g(x)) & 0 \\
A & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta \lambda \\
\Delta \mu
\end{array}\right]=-\left[\begin{array}{c}
\nabla f(x)+D g(x)^{\top} \lambda+A^{\top} \mu \\
-\operatorname{Diag}(\lambda) g(x)-\frac{1}{t} \mathbf{1} \\
A x-b
\end{array}\right] .
$$

Based on this, we may deduce a primal-dual algorithm. Given $\left(x_{t}, \lambda_{t}, \mu_{t}\right)$, we obtain

$$
\left(x_{t+1}, \lambda_{t+1}, \mu_{t+1}\right)=\left(x_{t}+\eta \Delta x_{t}, \lambda_{t}+\eta \Delta \eta_{t}, \mu_{t}+\eta \Delta \eta_{t}\right)
$$

for some step size $\eta>0$.

3.3 Primal-dual interior point method

How do we guarantee convergence of the primal-dual algorithm? Suppose that

$$
\begin{align*}
\nabla f(x)+D g(x)^{\top} \lambda+A^{\top} \mu & =0, \\
A x-b & =0 \tag{25.9}
\end{align*}
$$

and that $g_{i}(x) \leq 0$ and $\lambda_{i} \geq 0$ for $i=1, \ldots, m$. This means that x is feasible to (25.5) and that

$$
L(x, \lambda, \mu)=\min _{x} L(x, \lambda, \mu)=q(\lambda, \mu) .
$$

Here, we have

$$
f(x)-q(\lambda, \mu)=-\sum_{i=1}^{m} \lambda_{i} g_{i}(x)-\mu^{\top}(A x-b)=-\sum_{i=1}^{m} \lambda_{i} g_{i}(x) .
$$

As the Lagrangian duality implies that

$$
f(x)-\min \left\{f(x): g_{i}(x) \leq 0, i=1, \ldots, m, A x=b\right\} \leq f(x)-q(\lambda, \mu)
$$

we know that

$$
-\sum_{i=1}^{m} \lambda_{i} g_{i}(x)
$$

provides an optimality gap. However, the infeasible start Newton method does not guarantee feasibility for intermediate iterations. Therefore, $-\sum_{i=1}^{m} \lambda_{i} g_{i}(x)$ is not necessarily an upper bound on the optimality gap if (25.9) is not satisfied. Nevertheless, the term $-\sum_{i=1}^{m} \lambda_{i} g_{i}(x)$ provides a proxy for the optimality gap. Based on this observation, we may deduce the following algorithm.

```
Algorithm 2 Primal-dual interior point method
    Initialize \(x_{1}\) with \(g_{i}\left(x_{1}\right)<0\) for \(i=1, \ldots, m, \lambda^{1}>0, \alpha>1\), and an accuracy level \(\epsilon\).
    Set \(\delta_{1}=-\sum_{i=1}^{m} \lambda_{i}^{1}\left(g_{i}\left(x_{1}\right)\right)\).
    while \(\delta_{k}>\epsilon\) or \(\left(\left\|r_{\text {primal }}\left(x_{k}, \lambda^{k}, \mu_{k}\right)\right\|_{2}^{2}+\left\|r_{\text {dual }}\left(x_{k}, \lambda^{k}, \mu_{k}\right)\right\|_{2}^{2}\right)^{1 / 2}>\epsilon\) do
        Set \(t=\alpha m / \delta_{k}\)
        Obtain \(\Delta x_{k}, \Delta \lambda^{k}\), and \(\Delta \mu_{k}\).
        Apply backtracking line search to determin step size \(\eta_{k}\).
        Update \(\left(x_{k+1}, \lambda^{k+1}, \mu_{k+1}\right)=\left(x_{k}+\eta \Delta x_{k}, \lambda^{k}+\eta \Delta \lambda^{k}, \mu_{k}+\eta \Delta \mu_{k}\right)\).
        Set \(\delta^{k+1}=-\sum_{i=1}^{m} \lambda_{i}^{k+1} g_{i}\left(x_{k+1}\right)\).
        \(k \leftarrow k+1\).
    end while
```

Here, the backtracking line search needs to find η such that $g_{i}\left(x_{k+1}\right)<0$ and $\lambda_{i}^{k}>0$ for $i=1, \ldots, m$.

