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1 Outline

In this lecture, we study

• Newton’s method for equality constrained minimization

• Barrier method.

2 Newton’s method for equality constrained minimization

Let us consider the following convex optimization problem with equality constraints.

minimize f(x)

subject to Ax = b.
(24.1)

Here, Ax = b consists of affine constraints, and the objective function f is convex and twice
continuously differentiable. Recall that for the unconstrained setting, Newton’s method proceeds
with the update rule

xt+1 ∈ argmin
x

{
f(xt) +∇f(xt)⊤(x− xt) +

1

2
(x− xt)

⊤∇2f(xt)(x− xt)

}
from which we deduce

xt+1 = xt −∇2f(xt)
−1∇f(xt).

Here, the descent direction d = −∇2f(xt)
−1∇f(xt) can be directly computed by

d ∈ argmin
x

{
f(xt) +∇f(xt)⊤d+

1

2
d⊤∇2f(xt)d

}
because xt+1 = xt+d. Based on this, we may extend Newton’s method to the equality constrained
problem. Basically, the direction d for the update rule can be computed as an optimal solution to
the following optimization problem

minimize f(xt) +∇f(xt)⊤d+
1

2
d⊤∇2f(xt)d

subject to A(xt + d) = b.
(24.2)

Here, if this optimization problem has a solution, then xt+ d is indeed a feasible solution to (24.1).
In fact, we can characterize such a direction d by the KKT conditions. Note that the associated
Lagrangian is given by

L(d, µ) = f(xt) +∇f(xt)⊤d+
1

2
d⊤∇2f(xt)d+ µ⊤(A(xt + d)− b).

Then, since f is convex and the constraints are all affine, it follows from the KKT conditions that
d is an optimal solution to (24.2) if and only if there exists µ such that

∇f(xt) +∇2f(xt)d+A⊤µ = 0,

A(xt + d) = b.
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Subject to Axt = b, this can be expressed as the following matrix system.[
∇2f(xt) A⊤

A 0

] [
d
µ

]
=

[
−∇f(xt)

0

]
.

Here, the matrix [
∇2f(xt) A⊤

A 0

]
is referred to as the KKT matrix.

3 Barrier method

In this section we consider the following constrained convex minimization problem.

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m,

Ax = b.

(24.3)

Comparing this setting and (24.1), we have additional inequality constraints gi(x) ≤ 0 for i ∈
[m]. Suppose that (24.3) satisfies Slater’s condition. As an example of (24.3), we consider linear
programs of the form

minimize c⊤x

subject to p⊤i x ≤ qi, i = 1, . . . ,m,

Ax = b.

(24.4)

In the last section, we dealt with the equality constrained setting, motivated by which we consider
the following equivalent setting of (24.3).

minimize f(x) +
m∑
i=1

IR−(gi(x))

subject to Ax = b

(24.5)

where R− = {x ∈ R : x ≤ 0} and IR− is the associated indicator function. Here, the indicator
function IR− is non-smooth. One way of dealing with this is to approximate the indicator function,
for which we consider so-called barrier functions. There are two common examples for barrier
functions as follows.

log-barrier : ψ(x) = −
m∑
i=1

log(−gi(x)),

inverse : ψ(x) = −
m∑
i=1

1

gi(x)
.

The important property of barrier function ψ(x) is that as gi(x) approaches 0, ψ(x) gets arbitrarily
large and goes to +∞. Note that both functions are convex if g1, . . . , gm are convex. In this section,
we focus on the log-barrier function. For the linear program given by (24.4), the corresponding
log-barrier function is given by

ψ(x) = −
m∑
i=1

log(qi − p⊤i x).
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Before we discuss some specific properties of the log-barrier function, we explain the general outline
of the barrier method and related concepts. The basic idea is to consider

minimize f(x) +
1

t
ψ(x)

subject to Ax = b
(24.6)

where ψ is the barrier function and t > 0 is a parameter that we increase over time.

3.1 Central path

Suppose for now that (24.6) has a unique optimal solution. Note that (24.6) is equivalent to

minimize tf(x) + ψ(x)

subject to Ax = b
(24.7)

In fact, the uniqueness can be guaranteed for many of the important applications as the negative
log function − log x is strictly convex. For example, linear programs and quadratic programs. Let

x⋆(t) = argmin
x

{tf(x) + ψ(x) : Ax = b} .

Here, the set consists of the optimal solutions for varying values of t

{x⋆(t) : t > 0}

is referred to as the central path. Note that each point x⋆(t) is a feasible solution to (24.3),
and therefore, the central path is fully contained in the feasible region of the original optimization
problem (24.3). Figure 24.11 shows the central path for a linear program, Here, the dotted contours

Figure 24.1: Central path for a linear program

correspond to the log-barrier function. Interestingly, the hyperplane c⊤x = c⊤x⋆(t) containing x⋆(t)
with direction c is tangent to the contour containing x⋆(t). This can be seen from characterizing
the central path with the KKT conditions.

1The figure is taken from the lecture slides of Stanford University’s EE364a: Convex Optimization by Boyd and
Vandenberghe.
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Note that the gradient of the log-barrier function is given by

∇ψ(x) = −
m∑
i=1

1

gi(x)
∇gi(x).

As the Lagrangian of (24.7) is given by

L(x, µ) = tf(x) + ψ(x) + µ⊤(Ax− b),

the KKT conditions state that x⋆(t) is optimal to (24.7) if and only if there exists µ⋆ such that

t∇f(x⋆(t))−
m∑
i=1

1

gi(x⋆(t))
∇gi(x⋆(t)) +A⊤µ⋆ = 0,

gi(x
⋆(t)) < 0, i = 1, . . . ,m,

Ax⋆(t) = b.

For a linear program with an equality constraint, i.e. A = 0 and b = 0, the characterization of
x⋆(t) states that

t · c = −∇ψ(x⋆(t)) =
m∑
i=1

1

p⊤i x− qi
pi.

Note that the direction of the tangent hyperplane at x⋆(t) is given by ∇ψ(x⋆(t)) and it is a scaling
of the objective direction c.

3.2 Duality gap

By definition, x⋆(t) is feasible to (24.3) by definition. We may construct a feasible dual solution
associated with x⋆(t). Let λ⋆i (t) and µ

⋆(t) be defined as

λ⋆i (t) = − 1

t · gi(x⋆(t))
, i = 1, . . . ,m, µ⋆(t) =

µ⋆

t
.

By definition, it follows that

∇f(x⋆(t)) +
m∑
i=1

λi∇gi(x⋆(t)) +A⊤µ⋆(t) = 0,

λ⋆i (t) > 0, i = 1, . . . ,m.

This implies that

L(x⋆(t), λ⋆(t), µ⋆(t)) = f(x⋆(t)) +

m∑
i=1

λ⋆i (t)gi(x
⋆(t)) + µ⋆(t)⊤(Ax⋆(t)− b)

= min
x

{
f(x) +

m∑
i=1

λ⋆i (t)gi(x) + µ⋆(t)⊤(Ax− b)

}
= q(λ⋆(t), µ⋆(t))

where L(x, λ, µ) is the Lagrangian function for (24.3). Furthermore,

f(x⋆(t))− q(λ⋆(t), µ⋆(t)) = −
m∑
i=1

λ⋆i (t)gi(x
⋆(t))− µ⋆(t)⊤(Ax⋆(t)− b) =

m

t
.
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Since the Lagrangian dual function q(λ, µ) provides a lower bound on the optimal value of (24.3),
it follows that

f(x⋆(t))−min {f(x) : gi(x) ≤ 0, i = 1, . . . ,m, Ax = b} ≤ m

t
.

This suggests an algorithm for solving (24.3).

3.3 Implementing the barrier method

Suppose that the desired accuracy for solving (24.3) is ϵ. In other words, we want to find a feasible
solution x such that

f(x)−min {f(x) : gi(x) ≤ 0, i = 1, . . . ,m, Ax = b} ≤ ϵ.

In this case, we may choose t = m/ϵ and obtain x⋆(m/ϵ) by applying the barrier method. However,
when ϵ is tiny, solving (24.7) with huge t = m/ϵ can be numerically unstable. Hence, in practice,
we incrementally increase the value of t instead of setting it to a large value upfront. Here is the
general template.

1. Initialize t0 > 0 and α > 1.

2. Obtain x0 = x⋆(t0).

3. For k = 1, 2, 3, . . ., repeat the following.

• Set tk = αtk−1.

• Apply Newton’s method initialized at xk−1 to obtain xk = x⋆(tk).

• Break if m/tk ≤ ϵ.

We may easily deduce the convergence analysis of the barrier method. Suppose that k is the
smallest number such that m/tk ≤ ϵ. This means that

m

αk−1t0
≥ ϵ,

which in turn implies that

k ≤ 1 +
1

logα
log

m

t0ϵ
= O

(
log

m

ϵ

)
.

3.4 Perturbed KKT conditions

Recall that λ⋆i (t) and µ
⋆(t) defined as

λ⋆i (t) = − 1

t · gi(x⋆(t))
, i = 1, . . . ,m, µ⋆(t) =

µ⋆

t

together with x⋆(t) satisfy ∇f(x⋆(t)) +
∑m

i=1 λi∇gi(x⋆(t)) + A⊤µ = 0. By definition, (x, λ, µ) =
(x⋆(t), λ⋆(t), µ⋆(t)) satisfies

∇f(x) +
m∑
i=1

λi∇gi(x) +A⊤µ = 0,

λigi(x) = −1

t
, i = 1, . . . ,m,

gi(x) ≤ 0, i = 1, . . . ,m

Ax = b,

λi ≥ 0, i = 1, . . . ,m.

(24.8)
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Here, the only difference between this system and the KKT conditions is the condition λigi(x) =
−1/t for i ∈ [m]. In fact, as t → +∞ , the condition gets close to the complementary slackness
condition λigi(x) = 0 for i ∈ [m]. For this reason, the conditions (24.8) are referred to as the
perturbed KKT conditions.
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