1 Outline

In this lecture, we study

- Newton's method for equality constrained minimization
- Barrier method.

2 Newton's method for equality constrained minimization

Let us consider the following convex optimization problem with equality constraints.

$$
\begin{align*}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b \tag{24.1}
\end{align*}
$$

Here, $A x=b$ consists of affine constraints, and the objective function f is convex and twice continuously differentiable. Recall that for the unconstrained setting, Newton's method proceeds with the update rule

$$
x_{t+1} \in \underset{x}{\operatorname{argmin}}\left\{f\left(x_{t}\right)+\nabla f\left(x_{t}\right)^{\top}\left(x-x_{t}\right)+\frac{1}{2}\left(x-x_{t}\right)^{\top} \nabla^{2} f\left(x_{t}\right)\left(x-x_{t}\right)\right\}
$$

from which we deduce

$$
x_{t+1}=x_{t}-\nabla^{2} f\left(x_{t}\right)^{-1} \nabla f\left(x_{t}\right) .
$$

Here, the descent direction $d=-\nabla^{2} f\left(x_{t}\right)^{-1} \nabla f\left(x_{t}\right)$ can be directly computed by

$$
d \in \underset{x}{\operatorname{argmin}}\left\{f\left(x_{t}\right)+\nabla f\left(x_{t}\right)^{\top} d+\frac{1}{2} d^{\top} \nabla^{2} f\left(x_{t}\right) d\right\}
$$

because $x_{t+1}=x_{t}+d$. Based on this, we may extend Newton's method to the equality constrained problem. Basically, the direction d for the update rule can be computed as an optimal solution to the following optimization problem

$$
\begin{align*}
\operatorname{minimize} & f\left(x_{t}\right)+\nabla f\left(x_{t}\right)^{\top} d+\frac{1}{2} d^{\top} \nabla^{2} f\left(x_{t}\right) d \tag{24.2}\\
\text { subject to } & A\left(x_{t}+d\right)=b .
\end{align*}
$$

Here, if this optimization problem has a solution, then $x_{t}+d$ is indeed a feasible solution to (24.1). In fact, we can characterize such a direction d by the KKT conditions. Note that the associated Lagrangian is given by

$$
L(d, \mu)=f\left(x_{t}\right)+\nabla f\left(x_{t}\right)^{\top} d+\frac{1}{2} d^{\top} \nabla^{2} f\left(x_{t}\right) d+\mu^{\top}\left(A\left(x_{t}+d\right)-b\right) .
$$

Then, since f is convex and the constraints are all affine, it follows from the KKT conditions that d is an optimal solution to (24.2) if and only if there exists μ such that

$$
\begin{aligned}
\nabla f\left(x_{t}\right)+\nabla^{2} f\left(x_{t}\right) d+A^{\top} \mu & =0, \\
A\left(x_{t}+d\right) & =b .
\end{aligned}
$$

Subject to $A x_{t}=b$, this can be expressed as the following matrix system.

$$
\left[\begin{array}{cc}
\nabla^{2} f\left(x_{t}\right) & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
d \\
\mu
\end{array}\right]=\left[\begin{array}{c}
-\nabla f\left(x_{t}\right) \\
0
\end{array}\right]
$$

Here, the matrix

$$
\left[\begin{array}{cc}
\nabla^{2} f\left(x_{t}\right) & A^{\top} \\
A & 0
\end{array}\right]
$$

is referred to as the KKT matrix.

3 Barrier method

In this section we consider the following constrained convex minimization problem.

$$
\begin{align*}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, \quad i=1, \ldots, m \tag{24.3}\\
& A x=b
\end{align*}
$$

Comparing this setting and (24.1), we have additional inequality constraints $g_{i}(x) \leq 0$ for $i \in$ [m]. Suppose that (24.3) satisfies Slater's condition. As an example of (24.3), we consider linear programs of the form

$$
\begin{align*}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & p_{i}^{\top} x \leq q_{i}, \quad i=1, \ldots, m \tag{24.4}\\
& A x=b
\end{align*}
$$

In the last section, we dealt with the equality constrained setting, motivated by which we consider the following equivalent setting of (24.3).

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)+\sum_{i=1}^{m} I_{\mathbb{R}_{-}}\left(g_{i}(x)\right) \tag{24.5}\\
\text { subject to } & A x=b
\end{array}
$$

where $\mathbb{R}_{-}=\{x \in \mathbb{R}: x \leq 0\}$ and $I_{\mathbb{R}_{-}}$is the associated indicator function. Here, the indicator function $I_{\mathbb{R}_{-}}$is non-smooth. One way of dealing with this is to approximate the indicator function, for which we consider so-called barrier functions. There are two common examples for barrier functions as follows.

$$
\begin{aligned}
\text { log-barrier : } & \psi(x)=-\sum_{i=1}^{m} \log \left(-g_{i}(x)\right), \\
\text { inverse : } & \psi(x)=-\sum_{i=1}^{m} \frac{1}{g_{i}(x)}
\end{aligned}
$$

The important property of barrier function $\psi(x)$ is that as $g_{i}(x)$ approaches $0, \psi(x)$ gets arbitrarily large and goes to $+\infty$. Note that both functions are convex if g_{1}, \ldots, g_{m} are convex. In this section, we focus on the log-barrier function. For the linear program given by (24.4), the corresponding log-barrier function is given by

$$
\psi(x)=-\sum_{i=1}^{m} \log \left(q_{i}-p_{i}^{\top} x\right)
$$

Before we discuss some specific properties of the log-barrier function, we explain the general outline of the barrier method and related concepts. The basic idea is to consider

$$
\begin{align*}
\operatorname{minimize} & f(x)+\frac{1}{t} \psi(x) \tag{24.6}\\
\text { subject to } & A x=b
\end{align*}
$$

where ψ is the barrier function and $t>0$ is a parameter that we increase over time.

3.1 Central path

Suppose for now that (24.6) has a unique optimal solution. Note that (24.6) is equivalent to

$$
\begin{align*}
\operatorname{minimize} & t f(x)+\psi(x) \tag{24.7}\\
\text { subject to } & A x=b
\end{align*}
$$

In fact, the uniqueness can be guaranteed for many of the important applications as the negative \log function $-\log x$ is strictly convex. For example, linear programs and quadratic programs. Let

$$
x^{\star}(t)=\underset{x}{\operatorname{argmin}}\{t f(x)+\psi(x): A x=b\} .
$$

Here, the set consists of the optimal solutions for varying values of t

$$
\left\{x^{\star}(t): t>0\right\}
$$

is referred to as the central path. Note that each point $x^{\star}(t)$ is a feasible solution to (24.3), and therefore, the central path is fully contained in the feasible region of the original optimization problem (24.3). Figure 24.1^{1} shows the central path for a linear program, Here, the dotted contours

Figure 24.1: Central path for a linear program
correspond to the log-barrier function. Interestingly, the hyperplane $c^{\top} x=c^{\top} x^{\star}(t)$ containing $x^{\star}(t)$ with direction c is tangent to the contour containing $x^{\star}(t)$. This can be seen from characterizing the central path with the KKT conditions.

[^0]Note that the gradient of the log-barrier function is given by

$$
\nabla \psi(x)=-\sum_{i=1}^{m} \frac{1}{g_{i}(x)} \nabla g_{i}(x) .
$$

As the Lagrangian of (24.7) is given by

$$
L(x, \mu)=t f(x)+\psi(x)+\mu^{\top}(A x-b),
$$

the KKT conditions state that $x^{\star}(t)$ is optimal to (24.7) if and only if there exists μ^{\star} such that

$$
\begin{aligned}
t \nabla f\left(x^{\star}(t)\right)-\sum_{i=1}^{m} \frac{1}{g_{i}\left(x^{\star}(t)\right)} \nabla g_{i}\left(x^{\star}(t)\right)+A^{\top} \mu^{\star} & =0, \\
g_{i}\left(x^{\star}(t)\right) & <0, \quad i=1, \ldots, m, \\
A x^{\star}(t) & =b .
\end{aligned}
$$

For a linear program with an equality constraint, i.e. $A=0$ and $b=0$, the characterization of $x^{\star}(t)$ states that

$$
t \cdot c=-\nabla \psi\left(x^{\star}(t)\right)=\sum_{i=1}^{m} \frac{1}{p_{i}^{\top} x-q_{i}} p_{i} .
$$

Note that the direction of the tangent hyperplane at $x^{\star}(t)$ is given by $\nabla \psi\left(x^{\star}(t)\right)$ and it is a scaling of the objective direction c.

3.2 Duality gap

By definition, $x^{\star}(t)$ is feasible to (24.3) by definition. We may construct a feasible dual solution associated with $x^{\star}(t)$. Let $\lambda_{i}^{\star}(t)$ and $\mu^{\star}(t)$ be defined as

$$
\lambda_{i}^{\star}(t)=-\frac{1}{t \cdot g_{i}\left(x^{\star}(t)\right)}, \quad i=1, \ldots, m, \quad \mu^{\star}(t)=\frac{\mu^{\star}}{t} .
$$

By definition, it follows that

$$
\begin{aligned}
\nabla f\left(x^{\star}(t)\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(x^{\star}(t)\right)+A^{\top} \mu^{\star}(t) & =0, \\
\lambda_{i}^{\star}(t) & >0, \quad i=1, \ldots, m .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
L\left(x^{\star}(t), \lambda^{\star}(t), \mu^{\star}(t)\right) & =f\left(x^{\star}(t)\right)+\sum_{i=1}^{m} \lambda_{i}^{\star}(t) g_{i}\left(x^{\star}(t)\right)+\mu^{\star}(t)^{\top}\left(A x^{\star}(t)-b\right) \\
& =\min _{x}\left\{f(x)+\sum_{i=1}^{m} \lambda_{i}^{\star}(t) g_{i}(x)+\mu^{\star}(t)^{\top}(A x-b)\right\} \\
& =q\left(\lambda^{\star}(t), \mu^{\star}(t)\right)
\end{aligned}
$$

where $L(x, \lambda, \mu)$ is the Lagrangian function for (24.3). Furthermore,

$$
f\left(x^{\star}(t)\right)-q\left(\lambda^{\star}(t), \mu^{\star}(t)\right)=-\sum_{i=1}^{m} \lambda_{i}^{\star}(t) g_{i}\left(x^{\star}(t)\right)-\mu^{\star}(t)^{\top}\left(A x^{\star}(t)-b\right)=\frac{m}{t} .
$$

Since the Lagrangian dual function $q(\lambda, \mu)$ provides a lower bound on the optimal value of (24.3), it follows that

$$
f\left(x^{\star}(t)\right)-\min \left\{f(x): g_{i}(x) \leq 0, i=1, \ldots, m, A x=b\right\} \leq \frac{m}{t}
$$

This suggests an algorithm for solving (24.3).

3.3 Implementing the barrier method

Suppose that the desired accuracy for solving (24.3) is ϵ. In other words, we want to find a feasible solution x such that

$$
f(x)-\min \left\{f(x): g_{i}(x) \leq 0, i=1, \ldots, m, A x=b\right\} \leq \epsilon
$$

In this case, we may choose $t=m / \epsilon$ and obtain $x^{\star}(m / \epsilon)$ by applying the barrier method. However, when ϵ is tiny, solving (24.7) with huge $t=m / \epsilon$ can be numerically unstable. Hence, in practice, we incrementally increase the value of t instead of setting it to a large value upfront. Here is the general template.

1. Initialize $t^{0}>0$ and $\alpha>1$.
2. Obtain $x^{0}=x^{\star}\left(t^{0}\right)$.

3 . For $k=1,2,3, \ldots$, repeat the following.

- Set $t^{k}=\alpha t^{k-1}$.
- Apply Newton's method initialized at x^{k-1} to obtain $x^{k}=x^{\star}\left(t^{k}\right)$.
- Break if $m / t^{k} \leq \epsilon$.

We may easily deduce the convergence analysis of the barrier method. Suppose that k is the smallest number such that $m / t^{k} \leq \epsilon$. This means that

$$
\frac{m}{\alpha^{k-1} t^{0}} \geq \epsilon
$$

which in turn implies that

$$
k \leq 1+\frac{1}{\log \alpha} \log \frac{m}{t^{0} \epsilon}=O\left(\log \frac{m}{\epsilon}\right) .
$$

3.4 Perturbed KKT conditions

Recall that $\lambda_{i}^{\star}(t)$ and $\mu^{\star}(t)$ defined as

$$
\lambda_{i}^{\star}(t)=-\frac{1}{t \cdot g_{i}\left(x^{\star}(t)\right)}, \quad i=1, \ldots, m, \quad \mu^{\star}(t)=\frac{\mu^{\star}}{t}
$$

together with $x^{\star}(t)$ satisfy $\nabla f\left(x^{\star}(t)\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(x^{\star}(t)\right)+A^{\top} \mu=0$. By definition, $(x, \lambda, \mu)=$ $\left(x^{\star}(t), \lambda^{\star}(t), \mu^{\star}(t)\right)$ satisfies

$$
\begin{align*}
\nabla f(x)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}(x)+A^{\top} \mu & =0 \\
\lambda_{i} g_{i}(x) & =-\frac{1}{t}, \quad i=1, \ldots, m \tag{24.8}\\
g_{i}(x) & \leq 0, \quad i=1, \ldots, m \\
A x & =b, \\
\lambda_{i} & \geq 0, \quad i=1, \ldots, m
\end{align*}
$$

Here, the only difference between this system and the KKT conditions is the condition $\lambda_{i} g_{i}(x)=$ $-1 / t$ for $i \in[m]$. In fact, as $t \rightarrow+\infty$, the condition gets close to the complementary slackness condition $\lambda_{i} g_{i}(x)=0$ for $i \in[m]$. For this reason, the conditions (24.8) are referred to as the perturbed KKT conditions.

[^0]: ${ }^{1}$ The figure is taken from the lecture slides of Stanford University's EE364a: Convex Optimization by Boyd and Vandenberghe.

