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1 Outline

In this lecture, we study

e Newton’s method.

e Convergence of Newton’s method.

2 Quasi-Newton method

Remember our comparison of gradient descent and Newton’s method. Gradient descent has a cheper
iteration cost of O(d), while Newton’s method has a lower iteration complexity of O(loglog(1/€)).
Quasi-Newton methods are designed to achieve the best of both worlds. We will study methods
that achieve an iteration cost of O(d?) and an iteration complexity of o(log(1/¢)).

The basic outline of a quasi-Newton method is as follows.

Algorithm 1 Quasi-Newton method

Initialize x1 and a positive definite matrix Bj.
fort=1,...,7T—1do
Solve Btgt == *Vf(l’t)
Update x¢y1 = ¢ + 119t
Compute By from By.
end for
Reutrn x7.

Here, a candidate for By is V2f(x;), in which case, g¢ = —V2f(x;)" 'V f(x;) corresponds to a
Newton interation. Note that given x; and By, we can obtain ¢; and x;11. For the next iteration,
we need to design B;,1. There are several desired properties when selecting B;y1 based on By.

e We want Biyi to be symmetric and positive definite.
e We want Biyi to be close to B, or we want to compute By from B; easily.

e We want Byy1 to satisfy
Vf(zi11) = V(@) = Beiage.

A motivation for this is that for one dimensional problem, we have

h(z41) — W)

W(@e1) = Ti+1 — Tt

and thus h(zi41) — h(zy) = W (x441)(Xp41 — 7).



Hereinafter, we stick to the following notations for ease of exposition.

Bt =By, B=DB:, st =g1, s=g, y=Vf(x1)— V().

Hence, the goal is to compute BT satisfying the desired properties. In particular, we want BT to
be positive definite and satisfy
y=B"s,

which is called the secant equation.

2.1 Symmetric rank-one (SR1) update

Remember that we want BT to be something that is “close” to B. One way is to add a rank-one
matrix to B to obtain BT. To be precise, let a € R and u € R?. Then we update

Bt =B+ auu'.

Then the secant equation requires that

y— Bs = a(u's)u,

in which case y — Bs and u are scalar multiples of each other. Hence, we can set u = y — Bs and
a=1/((y — Bs)"s). Then BT is given by

(y— Bs)(y — Bs)"

BT =B
T W—Bs)Ts

Next, to compute s' satisfying BTs™ = —V f(z™), which corresponds to Biy1gi+1 = —V f(x441),
we need to obtain the inverse of BT. In fact, the inverse of B* based on the SR1 update is given
easily.

Lemma 23.1 (Sherman-Morrison formula). Let B € R¥? be invertible, and let u,v € Re.

B luv B!

Biw )y l=pl_ 2 W2
(B+uv) 1+ovTB 1y

Based on this lemma,

B~ '(y - Bs)(y — Bs)' B!
(y—Bs)Ts+ (y— Bs)"B~1(y — Bs)
(s=B'y)(s—-B'y"

(s—=By)Ty

(B+)71 _ Bfl _

=B 14

However, BT is not necessarily positive definite, even if B is.
2.2 Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

Our next attempt is to add a rank-two matrix, which is the sum of two rank-one matrices. To be
specific, let a,b € R and u,v € R Then we update

BY =B +auu" +bvv'.
Then the secant equation requires that
y — Bs=a(u's)u+bv's)v,
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in which case, we can set u = —Bs and v = y. Then

Bss'B  yy!

Bt =B - .
s'"Bs  yTs

This update rule is called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.

Lemma 23.2 (Woodbury formula). Let B, D be invertible matrices and U,V be matrices of ap-
propriate dimensions. Then

(B+UDV) '=B"' - B Uyt +vBlu)y"lvBL

Then

-1

(B = | B+ [Bs

U

~1/s"Bs 0 s'B
! T T
~~ 0 1y 's] [y
\%4

T T T
_<I—S‘Z>B—1 <I—yi>+si.
y's y's)  yTs

Once we have obtained the inverse of B, computing the inverse of BT boils down to rank-one
matrix multiplications, which costs O(d?) time steps.

Moreover, the resulting matrix BT is positive definite.

T T T T )2
xT(B+)_1x: <.%'—“y> B—l <$—S ‘Ty> + (ZE 8) )

y's y's y's

Here, since B is positive definite, so is its inverse. Hence, the first term is strictly positive. Moreover,
T 1 T
y s= n—(Vf(chl) — V(@) (@41 —a) 20
¢

due to the convexity of f. Therefore, ' (BT)™'2 > 0 for any nonzero x, and thus BT is positive
definite.
2.3 Davidon-Fletcher-Powell (DFP) update

The DFGS update adds a rank-two matrix to the current matrix B. We may add a rank-two
matrix to the inverse, and the corresponding update rule is called the Davidon-Fletcher-Powell
(DFP) update. To be specific,

(BN ' =B +auu’ +bwo’,

which is equivalent to
-1 T !
Bt = (B +auu’ + bvv )

Then the secant equation requires that

s— By =a(u'y)u+bv yu.



Following the same argument from the previous part, we have

B lyy"TB~1  ssT

Bt =B71- :
(B7) y' B~y * sty

Moreover,

2.4 Broyden class

We have discussed the BFGS and DFP update rules to run quasi-Newton iterations. We can
interpolate them by taking
Bt = (1 - ¢)Bgpas + ¢Bppp (23.1)

for some fixed ¢ where BEFGS and B]JSFP denote the matrices obtained by the BFGS and DFP
update rules, respectively. Then

B" = Bipas + ¢(Bppp — Bpas)
Bss' B ys' sy’

_ p+

~sivos o (5= 5550 - (135 B (1=
;

. T Y Bs Y Bs

= Bpras + ¢(s Bs) (yTs B STBS> (yTs B STBS> ’

The Broyden class is the family of up update rules given by (23.1) for any ¢. Of course, the BFGS

and DFP updates belong to the Broyden class, corresponding to ¢ = 0 and ¢ = 1, respectively. In
fact, the SR1 update is also in the Broyden class, as it corresponds to

gL -
~ y's—s'Bs’

2.5 Convergence of quasi-Newton methods

As for Newton’s method, we assume the following conditions to guarantee convergence of quasi-
Newton methods.

e f is twice continuously differentiable.
e f is m-strongly convex and M-smooth in the £5 norm.

e The Hessian of f is L-Lipschitz continuous in the ¢ norm.

It is proved that both BFGS and DFP with backtracking line search guarantee
@41 — 2%l2 < crllwe — 272

where ¢; — 0 as t — co. Remember that gradient descent guarantees
2041 — 2%[|2 < yllwe — 272

for some “fixed” 7. Hence, quasi-Newton methods result in faster convergence. At the same time,
each iteration requires O(d?) time, which is smaller than O(d?).
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