1 Outline

In this lecture, we study

- Dual gradient method,
- Moreau-Yosida smoothing.
- Optimization of the Moreau envelope.

2 Dual gradient method

We consider

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & A x=b
\end{aligned}
$$

We observed that its dual is given by

$$
\operatorname{maximize} \quad-f^{*}\left(-A^{\top} \mu\right)-b^{\top} \mu
$$

Then the problem is equivalent to

$$
(-1) \times \text { minimize } f^{*}\left(-A^{\top} \mu\right)+b^{\top} \mu .
$$

As f^{*} is convex, this dual forumulation is a convex minimization problem. Let us apply the subgradient method to the dual.

2.1 Subgradient method for the dual problem

Given μ_{t}, let $g_{t} \in \partial\left(f^{*}\left(-A^{\top} \mu_{t}\right)+b^{\top} \mu_{t}\right)$. Then the subgradient method applies the following update rule.

$$
\mu_{t+1}=\mu_{t}-\eta_{t} g_{t}
$$

Here, what is a subgradient g_{t} ? Note that

$$
\underbrace{\partial\left(f^{*}\left(-A^{\top} \mu_{t}\right)+b^{\top} \mu_{t}\right)}_{\text {subdifferential of } f^{*}\left(-A^{\top} \mu\right)+b^{\top} \mu \text { at } \mu=\mu_{t}}=-A \underbrace{\partial f^{*}\left(-A^{\top} \mu_{t}\right)}_{\text {subdifferential of } f^{*}(\mu) \text { at } \mu=-A^{\top} \mu_{t}}+b .
$$

Hence, $g_{t} \in \partial\left(f^{*}\left(-A^{\top} \mu_{t}\right)+b^{\top} \mu_{t}\right)$ if and only if

$$
g_{t} \in-A \partial f^{*}\left(-A^{\top} \mu_{t}\right)+b
$$

Therefore,

$$
g_{t}=-A x_{t}+b \quad \text { for some } x_{t} \in \partial f^{*}\left(-A^{\top} \mu_{t}\right) .
$$

Moreover, we have also observed that $x_{t} \in \partial f^{*}\left(-A^{\top} \mu_{t}\right)$ if and only if $-A^{\top} \mu_{t} \in \partial f\left(x_{t}\right)$. Here, $-A^{\top} \mu_{t} \in \partial f\left(x_{t}\right)$ holds if and only if $0 \in \partial f\left(x_{t}\right)+A^{\top} \mu_{t}$ which is equivalent to

$$
x_{t} \in \underset{x}{\operatorname{argmin}} f(x)+\mu_{t}^{\top} A x .
$$

Note that $\mu_{t}^{\top} b$ remains constant as x changes, so $x_{t} \in \operatorname{argmin}_{x} f(x)+\mu_{t}^{\top} A x$ is equivalent to

$$
x_{t} \in \underset{x}{\operatorname{argmin}} f(x)+\mu_{t}^{\top}(A x-b) .
$$

Therefore, the subgradient method applied to the dual problem proceeds with

$$
\begin{aligned}
& x_{t} \in \underset{x}{\operatorname{argmin}} f(x)+\mu_{t}^{\top}(A x-b), \\
& \mu_{t+1}=\mu_{t}+\eta_{t}\left(A x_{t}-b\right) .
\end{aligned}
$$

Here, $f(x)+\mu_{t}^{\top}(A x-b)$ is the Lagrangian function $\mathcal{L}(x, \mu)$ at $\mu=\mu_{t}$. In words, the subgradient method applied to the dual problem works as follows. At each iteration t with a given dual multiplier μ_{t}, we find a minimizer of the Lagrangian function $\mathcal{L}\left(x, \mu_{t}\right)$. Then we use the corresponding dual subgradient $A x_{t}-b$ to obtain a new multiplier μ_{t+1}.

```
Algorithm 1 Subgradient method for the dual problem
    Initialize \(\mu_{1}\).
    for \(t=1, \ldots, T-1\) do
        Obtain \(x_{t} \in \operatorname{argmin}_{x} f(x)+\mu_{t}^{\top}(A x-b)\),
        Update \(\mu_{t+1}=\mu_{t}+\eta_{t}\left(A x_{t}-b\right)\) for a step size \(\eta_{t}>0\).
    end for
```

At each iteration, we find a minimizer of the Lagrangian function $\mathcal{L}\left(x, \mu_{t}\right)$, which gives rise to an unconstrained optimization problem. Hence, the dual approach is useful when there is a complex system of constraints.

2.2 Smoothness and strong convexity

Another motivation for using dual methods is that the dual objective can become smooth even if the primal objective is not.

Theorem 20.1. Let $f: \mathbb{R}^{d}: \rightarrow \mathbb{R}$ be closed and α-strongly convex in the ℓ_{2} norm. Then f^{*} is $(1 / \alpha)$-smooth in the ℓ_{2} norm.

Proof. Given $y \in \mathbb{R}^{d}$, we have

$$
f^{*}(y)=\sup _{x \in \operatorname{dom}(f)}\left\{y^{\top} x-f(x)\right\} .
$$

Note that

$$
\begin{aligned}
x^{*} \in \partial f^{*}(y) & \leftrightarrow y \in \partial f\left(x^{*}\right) \\
& \leftrightarrow 0 \in y-\partial f\left(x^{*}\right) \\
& \leftrightarrow x^{*} \in \underset{x \in \operatorname{dom}(f)}{\operatorname{argmax}}\left\{y^{\top} x-f(x)\right\} .
\end{aligned}
$$

Since f is strongly convex, there exists a unique maximizer x^{*} for the supremum. This implies that the subdifferential of f^{*} contains a unique point, and therefore, f^{*} is differentiable.

Let $y_{1} \in \partial f\left(x_{1}\right)$ and $y_{2} \in \partial f\left(x_{2}\right)$. Since f is α-strongly convex, we have

$$
\begin{aligned}
f\left(x_{1}\right) & \geq f\left(x_{2}\right)+y_{2}^{\top}\left(x_{1}-x_{2}\right)+\frac{\alpha}{2}\left\|x_{1}-x_{2}\right\|_{2}^{2}, \\
f\left(x_{2}\right) & \geq f\left(x_{1}\right)+y_{1}^{\top}\left(x_{2}-x_{1}\right)+\frac{\alpha}{2}\left\|x_{2}-x_{1}\right\|_{2}^{2} .
\end{aligned}
$$

Summing up these two inequalities, we obtain

$$
\left(y_{1}-y_{2}\right)^{\top}\left(x_{1}-x_{2}\right) \geq \alpha\left\|x_{1}-x_{2}\right\|_{2}^{2}
$$

Hence,

$$
\left\|x_{1}-x_{2}\right\|_{2} \leq \frac{1}{\alpha}\left\|y_{1}-y_{2}\right\|_{2} .
$$

As $y_{1} \in \partial f\left(x_{1}\right)$ and $y_{2} \in \partial f\left(x_{2}\right)$, it follows that $x_{1}=\nabla f^{*}\left(y_{1}\right)$ and $x_{2}=\nabla f^{*}\left(y_{2}\right)$. Therefore,

$$
\left\|\nabla f^{*}\left(y_{1}\right)-\nabla f^{*}\left(y_{2}\right)\right\|_{2} \leq \frac{1}{\alpha}\left\|y_{1}-y_{2}\right\|_{2}
$$

which implies that f^{*} is $(1 / \alpha)$-smooth in the ℓ_{2} norm.
Remember that the subgradient method for strongly convex functions guarantees a convergence rate of $O(1 / T)$. However, the dual problem of a strongly convex function minimization is a smooth convex function minimization, for which the accelerated gradient method guarantees a convergence rate of $O\left(1 / T^{2}\right)$.
Theorem 20.2. Let $f: \mathbb{R}^{d}: \rightarrow \mathbb{R}$ be a closed convex β-smooth function in the ℓ_{2} norm. Then f^{*} is $(1 / \beta)$-strongly convex in the ℓ_{2} norm.

Proof. To show that f^{*} is $(1 / \beta)$-strongly convex in the ℓ_{2} norm, we will argue that

$$
h(y)=f^{*}(y)-\frac{1}{2 \beta}\|y\|_{2}^{2}
$$

is convex. Note that

$$
\partial h(y)=\partial f^{*}(y)-\frac{1}{\beta} y .
$$

We will use the fact that if ∂h is monotone, then h is convex. In other words, it is sufficient to show that for any $x_{1} \in \partial f^{*}\left(y_{1}\right)$ and $x_{2} \in \partial f^{*}\left(y_{2}\right)$, the following holds.

$$
\left(y_{1}-y_{2}\right)^{\top}\left(\left(x_{1}-(1 / \beta) y_{1}\right)-\left(x_{2}-(1 / \beta) y_{2}\right)\right) \geq 0
$$

which is equivalent to

$$
\left(y_{1}-y_{2}\right)^{\top}\left(x_{1}-x_{2}\right) \geq \frac{1}{\beta}\left\|y_{1}-y_{2}\right\|_{2}^{2} .
$$

Remember that if f is β-smooth,

$$
\left(\nabla f\left(x_{1}\right)-\nabla f\left(x_{2}\right)\right)^{\top}\left(x_{1}-x_{2}\right) \geq \frac{1}{\beta}\left\|\nabla f\left(x_{1}\right)-\nabla f\left(x_{2}\right)\right\|_{2}^{2}
$$

Moreover, for any $x_{1} \in \partial f^{*}\left(y_{1}\right)$ and $x_{2} \in \partial f^{*}\left(y_{2}\right)$, we have $y_{1}=\nabla f\left(x_{1}\right)$ and $y_{2}=\nabla f\left(x_{2}\right)$. Then the above inequality can be rewritten as

$$
\left(y_{1}-y_{2}\right)^{\top}\left(x_{1}-x_{2}\right) \geq \frac{1}{\beta}\left\|y_{1}-y_{2}\right\|_{2}^{2}
$$

as required.

2.3 Dual gradient method for separable problems

We can use dual methods when the objective is separable while there is a system of linking constraints. We consider

$$
\begin{aligned}
\operatorname{minimize} & f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \\
\text { subject to } & A_{1} x_{1}+A_{2} x_{2}=b
\end{aligned}
$$

Let us derive its dual. The Lagrangian dual function is given by

$$
\begin{aligned}
& \inf _{x_{1}, x_{2}}\left\{f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\mu^{\top}\left(A_{1} x_{1}+A_{2} x_{2}-b\right)\right\} \\
& =-b^{\top} \mu+\inf _{x_{1}}\left\{f_{1}\left(x_{1}\right)+\mu^{\top} A_{1} x_{1}\right\}+\inf _{x_{2}}\left\{f_{2}\left(x_{2}\right)+\mu^{\top} A_{2} x_{2}\right\} \\
& =-b^{\top} \mu-\sup _{x_{1}}\left\{-f_{1}\left(x_{1}\right)+\left(-A_{1}^{\top} \mu\right)^{\top} x_{1}\right\}-\sup _{x_{2}}\left\{-f_{2}\left(x_{2}\right)+\left(-A_{2}^{\top} \mu\right)^{\top} x_{2}\right\} \\
& =-b^{\top} \mu-f_{1}^{*}\left(-A_{1}^{\top} \mu\right)-f_{2}^{*}\left(-A_{2}^{\top} \mu\right) .
\end{aligned}
$$

Therefore, the Lagrangian dual problem is given by

$$
\operatorname{maximize} \quad-f_{1}^{*}\left(-A_{1}^{\top} \mu\right)-f_{2}^{*}\left(-A_{2}^{\top} \mu\right)-b^{\top} \mu
$$

Again, this problem is equivalent to the following convex minimization problem.

$$
(-1) \times \quad \times \quad \text { minimize } \quad f_{1}^{*}\left(-A_{1}^{\top} \mu\right)+f_{2}^{*}\left(-A_{2}^{\top} \mu\right)+b^{\top} \mu
$$

Given μ_{t}, let $g_{t} \in \partial\left(f_{1}^{*}\left(-A_{1}^{\top} \mu_{t}\right)+f_{2}^{*}\left(-A_{2}^{\top} \mu_{t}\right)+b^{\top} \mu_{t}\right)$. We can argue that

$$
\partial\left(f_{1}^{*}\left(-A_{1}^{\top} \mu_{t}\right)+f_{2}^{*}\left(-A_{2}^{\top} \mu_{t}\right)+b^{\top} \mu_{t}\right)=-A_{1} \partial f_{1}^{*}\left(-A_{1}^{\top} \mu_{t}\right)-A_{2} \partial f_{2}^{*}\left(-A_{2}^{\top} \mu_{t}\right)+b .
$$

Note that $x_{1, t} \in \partial f_{1}^{*}\left(-A_{1}^{\top} \mu_{t}\right)$ if and only if $-A_{1}^{\top} \mu_{t} \in \partial f_{1}\left(x_{1, t}\right)$. This is equvialent to

$$
x_{1, t} \in \underset{x_{1}}{\operatorname{argmin}}\left\{f_{1}\left(x_{1}\right)+\mu_{t}^{\top} A_{1} x_{1}\right\} .
$$

Similarly, $x_{2, t} \in \partial f_{2}^{*}\left(-A_{2}^{\top} \mu_{t}\right)$ if and only if

$$
x_{2, t} \in \underset{x_{2}}{\operatorname{argmin}}\left\{f_{2}\left(x_{2}\right)+\mu_{t}^{\top} A_{2} x_{2}\right\} .
$$

Therefore, the subgradient method applied to the dual problem proceeds with the following update rule.

$$
\mu_{t+1}=\mu_{t}+\eta_{t}\left(A_{1} x_{1, t}+A_{2} x_{2, t}-b\right)
$$

where

$$
\begin{aligned}
& x_{1, t} \in \underset{x_{1}}{\operatorname{argmin}}\left\{f_{1}\left(x_{1}\right)+\mu_{t}^{\top} A_{1} x_{1}\right\}, \\
& x_{2, t} \in \underset{x_{2}}{\operatorname{argmin}}\left\{f_{2}\left(x_{2}\right)+\mu_{t}^{\top} A_{2} x_{2}\right\} .
\end{aligned}
$$

Here, at each iteration, computing the iterates $x_{1, t}$ and $x_{2, t}$ can be done in parallel. For the primal problem, the variables x_{1} and x_{2} are connected through the constraints $A_{1} x_{1}+A_{2} x_{2}=b$. However, for the dual method, we separate the variables and x_{1} and x_{2} by the Lagrangian multiplier.

```
Algorithm 2 Subgradient method for the dual problem of a separable minimization
    Initialize \(\mu_{1}\).
    for \(t=1, \ldots, T-1\) do
        Obtain \(x_{1, t} \in \operatorname{argmin}_{x_{1}}\left\{f_{1}\left(x_{1}\right)+\mu_{t}^{\top} A_{1} x_{1}\right\}\) and \(x_{2, t} \in \operatorname{argmin}_{x_{2}}\left\{f_{2}\left(x_{2}\right)+\mu_{t}^{\top} A_{2} x_{2}\right\}\).
        \(\mu_{t+1}=\mu_{t}+\eta_{t}\left(A_{1} x_{1, t}+A_{2} x_{2, t}-b\right)\) for a step size \(\eta_{t}>0\).
    end for
```


3 Moreau-Yosida smoothing

Given a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, the Moreau-Yosida smoothing of f is defined as

$$
f_{\eta}(x):=\inf _{u}\left\{f(u)+\frac{1}{2 \eta}\|u-x\|_{2}^{2}\right\}
$$

for some $\eta>0$. This is also referred to as the Moreau envelope. Note that

$$
f_{\eta}(x)=f\left(\operatorname{prox}_{\eta f}(x)\right)+\frac{1}{2 \eta}\left\|\operatorname{prox}_{\eta f}(x)-x\right\|_{2}^{2} .
$$

Why do we care about this? There are several nice properties of the Moreau-Yosida smoothing.

3.1 Convexity and smoothness

Proposition 20.3. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be convex. Then f_{η} is convex.
Proof. Let

$$
g(x, u)=f(u)+\frac{1}{2 \eta}\|u-x\|_{2}^{2} .
$$

Then g is convex in x, and it is convex in u. Moerover, $f_{\eta}(x)$ is a partial minimization of $g(x, u)$ obtained after minimizing out the variables u. Therefore, f_{η} is convex.

Proposition 20.4. The Fenchel conjugate of f_{η} is given by

$$
f_{\eta}^{*}(y)=f^{*}(y)+\frac{\eta}{2}\|y\|_{2}^{2} .
$$

Proof. Note that

$$
f_{\eta}(x)=\inf _{u+v=x}\left\{f(u)+\frac{1}{2 \eta}\|v\|_{2}^{2}\right\} .
$$

Hence, f_{η} is the infimal convolution of f and $\|\cdot\|_{2}^{2} /(2 \eta)$. This implies that

$$
f_{\eta}^{*}(y)=f^{*}(y)+\left(\frac{1}{2 \eta}\|\cdot\|_{2}^{2}\right)^{*}(y) .
$$

Note that

$$
\left(\frac{1}{2 \eta}\|\cdot\|_{2}^{2}\right)^{*}(y)=\sup _{v}\left\{y^{\top} v-\frac{1}{2 \eta}\|v\|_{2}^{2}\right\}=\frac{\eta}{2}\|y\|_{2}^{2}
$$

where the last equality is deduced from the optimality condition.
As a direct consequence of Proposition 20.4, we deduce the the Moreau-Yosida smoothing is smooth.

Proposition 20.5. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be convex. Then its Moreau envelope f_{η} is $(1 / \eta)$-smooth in the ℓ_{2} norm.

Proof. First, as f is convex, f_{η} is convex. Since f_{η} is convex, it is continuous on \mathbb{R}^{d}. As \mathbb{R}^{d} is closed, f_{η} is a closed function. It follows from Proposition 20.4 that the Fenchel conjugate f_{η}^{*} of f_{η} is η-strongly convex in the ℓ_{2} norm. Then the Fenchel conjugate $f_{\eta}^{* *}$ of f_{η}^{*} is $(1 / \eta)$-smooth in the ℓ_{2} norm. Lastly, as f_{η} is closed and convex, $f_{\eta}^{* *}=f_{\eta}$. Therefore, f_{η} is also $(1 / \eta)$-smooth in the ℓ_{2} norm.

Let us consider an example.
Example 20.6. Let $f(x)=\|x\|_{1}$. Then

$$
f_{\eta}(x)=\sum_{i=1}^{d} \frac{1}{\eta} L_{\eta}\left(x_{i}\right)
$$

where

$$
L_{\eta}(c)= \begin{cases}\eta|c|-\eta^{2} / 2, & \text { if }|c| \geq \eta \\ |c|^{2} / 2, & \text { if }|c| \leq \eta\end{cases}
$$

Here, L_{η} is called the Huber loss (see Figure 20.1 ${ }^{1}$).

Figure 20.1: Huber loss

3.2 Optimization of the Moreau envelope

Moreover, we can compute the gradient of the Moreau-Yosida smoothing.
Proposition 20.7. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be convex. Then

$$
\nabla f_{\eta}(x)=\operatorname{prox}_{f^{*} / \eta}\left(\frac{x}{\eta}\right)=\frac{1}{\eta}\left(x-\operatorname{prox}_{\eta f}(x)\right) .
$$

[^0]Proof. By Proposition 20.5, f_{η} is smooth and thus differentiable. Moreover, as f_{η} is convex and closed, it follows that $y=\nabla f_{\eta}(x)$ if and only if $x \in \partial f_{\eta}^{*}(y)$. Note that Proposition 20.4 implies that

$$
\partial f_{\eta}^{*}(y)=\partial f^{*}(y)+\eta y^{*} .
$$

Hence, $x \in \partial f_{\eta}^{*}(y)$ if and only if $x-\eta y^{*} \in \partial f^{*}(y)$ which is equivalent to

$$
\frac{1}{\eta} x-y^{*} \in \frac{1}{\eta} \partial f^{*}(y)
$$

Furthermore, this is equivalent to

$$
\operatorname{prox}_{f^{*} / \eta}\left(\frac{x}{\eta}\right)=y^{*} .
$$

By the Moreau decomposition theorem, we have

$$
x=\operatorname{prox}_{\eta f}(x)+\eta \operatorname{prox}_{f^{*} / \eta}(x / \eta),
$$

so

$$
\frac{1}{\eta}\left(x-\operatorname{prox}_{\eta f}(x)\right)=\operatorname{prox}_{f^{*} / \eta}\left(\frac{x}{\eta}\right),
$$

as required.
Proposition 20.8. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be closed. Then a minimizer of the Moreau-Yosida smoothing f_{η} is a minimizer of f.

Proof. By Proposition 20.7, it follows that

$$
\nabla f_{\eta}(x)=\frac{1}{\eta}\left(x-\operatorname{prox}_{\eta f}(x)\right)
$$

Then, by the optimality condition, x^{*} is a minimizer of f_{η} if and only if

$$
0=\nabla f_{\eta}\left(x^{*}\right)=\frac{1}{\eta}\left(x^{*}-\operatorname{prox}_{\eta f}(x *)\right)
$$

which is equivalent to

$$
x^{*}=\operatorname{prox}_{\eta f}\left(x^{*}\right) .
$$

Note that $x^{*}=\operatorname{prox}_{\eta f}\left(x^{*}\right)$ holds if and only if

$$
0=x^{*}-x^{*} \in \eta \partial f\left(x^{*}\right) .
$$

Therefore, $x^{*}=\operatorname{prox}_{\eta f}\left(x^{*}\right)$ if and only if x^{*} is a minimizer of f.
Therefore, the problem

$$
\operatorname{minimize} \quad f(x)
$$

is equivalent to solving

$$
\text { minimize } \quad f_{\eta}(x)=\inf _{u}\left\{f(u)+\frac{1}{2 \eta}\|u-x\|_{2}^{2}\right\} .
$$

We know that f_{η} is convex by Proposition 20.3. Hence, we can attempt to solve the problem by gradient descent. By Proposition 20.7, the gradient of f_{η} is given by

$$
\nabla f_{\eta}(x)=\frac{1}{\eta}\left(x-\operatorname{prox}_{\eta f}(x)\right)
$$

Moreover, f_{η} is $(1 / \eta)$-smooth by Proposition 20.5. Hence, the gradient descent update rule proceeds with step size η given as follows

$$
x_{t+1}=x_{t}-\eta \nabla f_{\eta}\left(x_{t}\right)=\operatorname{prox}_{\eta f}\left(x_{t}\right) .
$$

This is precisely the update rule of the proximal point algorithm! This implies that the proximal point algorithm is equivalent to gradient descent applied to the smoothed objective.

[^0]: ${ }^{1}$ Image taken from http://yetanothermathprogrammingconsultant.blogspot.com/2021/09/ huber-regression-different-formulations.html

