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1 Outline

In this lecture, we study

• Dual gradient method,

• Moreau-Yosida smoothing.

• Optimization of the Moreau envelope.

2 Dual gradient method

We consider

minimize f(x)

subject to Ax = b.

We observed that its dual is given by

maximize − f∗(−A⊤µ)− b⊤µ.

Then the problem is equivalent to

(−1) × minimize f∗(−A⊤µ) + b⊤µ.

As f∗ is convex, this dual forumulation is a convex minimization problem. Let us apply the
subgradient method to the dual.

2.1 Subgradient method for the dual problem

Given µt, let gt ∈ ∂
(
f∗(−A⊤µt) + b⊤µt

)
. Then the subgradient method applies the following

update rule.
µt+1 = µt − ηtgt.

Here, what is a subgradient gt? Note that

∂
(
f∗(−A⊤µt) + b⊤µt

)
︸ ︷︷ ︸

subdifferential of f∗(−A⊤µ) + b⊤µ at µ = µt

= −A ∂f∗(−A⊤µt)︸ ︷︷ ︸
subdifferential of f∗(µ) at µ = −A⊤µt

+b.

Hence, gt ∈ ∂
(
f∗(−A⊤µt) + b⊤µt

)
if and only if

gt ∈ −A∂f∗(−A⊤µt) + b.

Therefore,
gt = −Axt + b for some xt ∈ ∂f∗(−A⊤µt).
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Moreover, we have also observed that xt ∈ ∂f∗(−A⊤µt) if and only if −A⊤µt ∈ ∂f(xt). Here,
−A⊤µt ∈ ∂f(xt) holds if and only if 0 ∈ ∂f(xt) +A⊤µt which is equivalent to

xt ∈ argmin
x

f(x) + µ⊤
t Ax.

Note that µ⊤
t b remains constant as x changes, so xt ∈ argminx f(x) + µ⊤

t Ax is equivalent to

xt ∈ argmin
x

f(x) + µ⊤
t (Ax− b).

Therefore, the subgradient method applied to the dual problem proceeds with

xt ∈ argmin
x

f(x) + µ⊤
t (Ax− b),

µt+1 = µt + ηt(Axt − b).

Here, f(x) + µ⊤
t (Ax − b) is the Lagrangian function L(x, µ) at µ = µt. In words, the subgradient

method applied to the dual problem works as follows. At each iteration t with a given dual multiplier
µt, we find a minimizer of the Lagrangian function L(x, µt). Then we use the corresponding dual
subgradient Axt − b to obtain a new multiplier µt+1.

Algorithm 1 Subgradient method for the dual problem

Initialize µ1.
for t = 1, . . . , T − 1 do

Obtain xt ∈ argminx f(x) + µ⊤
t (Ax− b),

Update µt+1 = µt + ηt(Axt − b) for a step size ηt > 0.
end for

At each iteration, we find a minimizer of the Lagrangian function L(x, µt), which gives rise to an
unconstrained optimization problem. Hence, the dual approach is useful when there is a complex
system of constraints.

2.2 Smoothness and strong convexity

Another motivation for using dual methods is that the dual objective can become smooth even if
the primal objective is not.

Theorem 20.1. Let f : Rd :→ R be closed and α-strongly convex in the ℓ2 norm. Then f∗ is
(1/α)-smooth in the ℓ2 norm.

Proof. Given y ∈ Rd, we have

f∗(y) = sup
x∈dom(f)

{
y⊤x− f(x)

}
.

Note that

x∗ ∈ ∂f∗(y) ↔ y ∈ ∂f(x∗)

↔ 0 ∈ y − ∂f(x∗)

↔ x∗ ∈ argmax
x∈dom(f)

{
y⊤x− f(x)

}
.
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Since f is strongly convex, there exists a unique maximizer x∗ for the supremum. This implies that
the subdifferential of f∗ contains a unique point, and therefore, f∗ is differentiable.

Let y1 ∈ ∂f(x1) and y2 ∈ ∂f(x2). Since f is α-strongly convex, we have

f(x1) ≥ f(x2) + y⊤2 (x1 − x2) +
α

2
∥x1 − x2∥22,

f(x2) ≥ f(x1) + y⊤1 (x2 − x1) +
α

2
∥x2 − x1∥22.

Summing up these two inequalities, we obtain

(y1 − y2)
⊤(x1 − x2) ≥ α∥x1 − x2∥22.

Hence,

∥x1 − x2∥2 ≤
1

α
∥y1 − y2∥2.

As y1 ∈ ∂f(x1) and y2 ∈ ∂f(x2), it follows that x1 = ∇f∗(y1) and x2 = ∇f∗(y2). Therefore,

∥∇f∗(y1)−∇f∗(y2)∥2 ≤
1

α
∥y1 − y2∥2,

which implies that f∗ is (1/α)-smooth in the ℓ2 norm.

Remember that the subgradient method for strongly convex functions guarantees a convergence
rate of O(1/T ). However, the dual problem of a strongly convex function minimization is a smooth
convex function minimization, for which the accelerated gradient method guarantees a convergence
rate of O(1/T 2).

Theorem 20.2. Let f : Rd :→ R be a closed convex β-smooth function in the ℓ2 norm. Then f∗

is (1/β)-strongly convex in the ℓ2 norm.

Proof. To show that f∗ is (1/β)-strongly convex in the ℓ2 norm, we will argue that

h(y) = f∗(y)− 1

2β
∥y∥22

is convex. Note that

∂h(y) = ∂f∗(y)− 1

β
y.

We will use the fact that if ∂h is monotone, then h is convex. In other words, it is sufficient to
show that for any x1 ∈ ∂f∗(y1) and x2 ∈ ∂f∗(y2), the following holds.

(y1 − y2)
⊤ ((x1 − (1/β)y1)− (x2 − (1/β)y2)) ≥ 0,

which is equivalent to

(y1 − y2)
⊤ (x1 − x2) ≥

1

β
∥y1 − y2∥22.

Remember that if f is β-smooth,

(∇f(x1)−∇f(x2))
⊤ (x1 − x2) ≥

1

β
∥∇f(x1)−∇f(x2)∥22.

Moreover, for any x1 ∈ ∂f∗(y1) and x2 ∈ ∂f∗(y2), we have y1 = ∇f(x1) and y2 = ∇f(x2). Then
the above inequality can be rewritten as

(y1 − y2)
⊤ (x1 − x2) ≥

1

β
∥y1 − y2∥22,

as required.
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2.3 Dual gradient method for separable problems

We can use dual methods when the objective is separable while there is a system of linking con-
straints. We consider

minimize f1(x1) + f2(x2)

subject to A1x1 +A2x2 = b.

Let us derive its dual. The Lagrangian dual function is given by

inf
x1,x2

{
f1(x1) + f2(x2) + µ⊤(A1x1 +A2x2 − b)

}
= −b⊤µ+ inf

x1

{
f1(x1) + µ⊤A1x1

}
+ inf

x2

{
f2(x2) + µ⊤A2x2

}
= −b⊤µ− sup

x1

{
−f1(x1) + (−A⊤

1 µ)
⊤x1

}
− sup

x2

{
−f2(x2) + (−A⊤

2 µ)
⊤x2

}
= −b⊤µ− f∗

1 (−A⊤
1 µ)− f∗

2 (−A⊤
2 µ).

Therefore, the Lagrangian dual problem is given by

maximize − f∗
1 (−A⊤

1 µ)− f∗
2 (−A⊤

2 µ)− b⊤µ.

Again, this problem is equivalent to the following convex minimization problem.

(−1) × minimize f∗
1 (−A⊤

1 µ) + f∗
2 (−A⊤

2 µ) + b⊤µ.

Given µt, let gt ∈ ∂
(
f∗
1 (−A⊤

1 µt) + f∗
2 (−A⊤

2 µt) + b⊤µt

)
. We can argue that

∂
(
f∗
1 (−A⊤

1 µt) + f∗
2 (−A⊤

2 µt) + b⊤µt

)
= −A1∂f

∗
1 (−A⊤

1 µt)−A2∂f
∗
2 (−A⊤

2 µt) + b.

Note that x1,t ∈ ∂f∗
1 (−A⊤

1 µt) if and only if −A⊤
1 µt ∈ ∂f1(x1,t). This is equvialent to

x1,t ∈ argmin
x1

{
f1(x1) + µ⊤

t A1x1

}
.

Similarly, x2,t ∈ ∂f∗
2 (−A⊤

2 µt) if and only if

x2,t ∈ argmin
x2

{
f2(x2) + µ⊤

t A2x2

}
.

Therefore, the subgradient method applied to the dual problem proceeds with the following update
rule.

µt+1 = µt + ηt(A1x1,t +A2x2,t − b)

where

x1,t ∈ argmin
x1

{
f1(x1) + µ⊤

t A1x1

}
,

x2,t ∈ argmin
x2

{
f2(x2) + µ⊤

t A2x2

}
.

Here, at each iteration, computing the iterates x1,t and x2,t can be done in parallel. For the primal
problem, the variables x1 and x2 are connected through the constraints A1x1+A2x2 = b. However,
for the dual method, we separate the variables and x1 and x2 by the Lagrangian multiplier.
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Algorithm 2 Subgradient method for the dual problem of a separable minimization

Initialize µ1.
for t = 1, . . . , T − 1 do

Obtain x1,t ∈ argminx1

{
f1(x1) + µ⊤

t A1x1
}
and x2,t ∈ argminx2

{
f2(x2) + µ⊤

t A2x2
}
.

µt+1 = µt + ηt(A1x1,t +A2x2,t − b) for a step size ηt > 0.
end for

3 Moreau-Yosida smoothing

Given a function f : Rd → R, the Moreau-Yosida smoothing of f is defined as

fη(x) := inf
u

{
f(u) +

1

2η
∥u− x∥22

}
for some η > 0. This is also referred to as the Moreau envelope. Note that

fη(x) = f
(
proxηf (x)

)
+

1

2η

∥∥proxηf (x)− x
∥∥2
2
.

Why do we care about this? There are several nice properties of the Moreau-Yosida smoothing.

3.1 Convexity and smoothness

Proposition 20.3. Let f : Rd → R be convex. Then fη is convex.

Proof. Let

g(x, u) = f(u) +
1

2η
∥u− x∥22.

Then g is convex in x, and it is convex in u. Moerover, fη(x) is a partial minimization of g(x, u)
obtained after minimizing out the variables u. Therefore, fη is convex.

Proposition 20.4. The Fenchel conjugate of fη is given by

f∗
η (y) = f∗(y) +

η

2
∥y∥22.

Proof. Note that

fη(x) = inf
u+v=x

{
f(u) +

1

2η
∥v∥22

}
.

Hence, fη is the infimal convolution of f and ∥ · ∥22/(2η). This implies that

f∗
η (y) = f∗(y) +

(
1

2η
∥ · ∥22

)∗
(y).

Note that (
1

2η
∥ · ∥22

)∗
(y) = sup

v

{
y⊤v − 1

2η
∥v∥22

}
=

η

2
∥y∥22

where the last equality is deduced from the optimality condition.

As a direct consequence of Proposition 20.4, we deduce the the Moreau-Yosida smoothing is smooth.
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Proposition 20.5. Let f : Rd → R be convex. Then its Moreau envelope fη is (1/η)-smooth in
the ℓ2 norm.

Proof. First, as f is convex, fη is convex. Since fη is convex, it is continuous on Rd. As Rd is
closed, fη is a closed function. It follows from Proposition 20.4 that the Fenchel conjugate f∗

η of fη
is η-strongly convex in the ℓ2 norm. Then the Fenchel conjugate f∗∗

η of f∗
η is (1/η)-smooth in the

ℓ2 norm. Lastly, as fη is closed and convex, f∗∗
η = fη. Therefore, fη is also (1/η)-smooth in the ℓ2

norm.

Let us consider an example.

Example 20.6. Let f(x) = ∥x∥1. Then

fη(x) =

d∑
i=1

1

η
Lη(xi)

where

Lη(c) =

{
η|c| − η2/2, if |c| ≥ η,

|c|2/2, if |c| ≤ η.

Here, Lη is called the Huber loss (see Figure 20.11).

Figure 20.1: Huber loss

3.2 Optimization of the Moreau envelope

Moreover, we can compute the gradient of the Moreau-Yosida smoothing.

Proposition 20.7. Let f : Rd → R be convex. Then

∇fη(x) = proxf∗/η

(
x

η

)
=

1

η
(x− proxηf (x)).

1Image taken from http://yetanothermathprogrammingconsultant.blogspot.com/2021/09/

huber-regression-different-formulations.html
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Proof. By Proposition 20.5, fη is smooth and thus differentiable. Moreover, as fη is convex and
closed, it follows that y = ∇fη(x) if and only if x ∈ ∂f∗

η (y). Note that Proposition 20.4 implies
that

∂f∗
η (y) = ∂f∗(y) + ηy∗.

Hence, x ∈ ∂f∗
η (y) if and only if x− ηy∗ ∈ ∂f∗(y) which is equivalent to

1

η
x− y∗ ∈ 1

η
∂f∗(y).

Furthermore, this is equivalent to

proxf∗/η

(
x

η

)
= y∗.

By the Moreau decomposition theorem, we have

x = proxηf (x) + η proxf∗/η (x/η) ,

so
1

η
(x− proxηf (x)) = proxf∗/η

(
x

η

)
,

as required.

Proposition 20.8. Let f : Rd → R be closed. Then a minimizer of the Moreau-Yosida smoothing
fη is a minimizer of f .

Proof. By Proposition 20.7, it follows that

∇fη(x) =
1

η
(x− proxηf (x)).

Then, by the optimality condition, x∗ is a minimizer of fη if and only if

0 = ∇fη(x
∗) =

1

η
(x∗ − proxηf (x∗))

which is equivalent to
x∗ = proxηf (x

∗).

Note that x∗ = proxηf (x
∗) holds if and only if

0 = x∗ − x∗ ∈ η∂f(x∗).

Therefore, x∗ = proxηf (x
∗) if and only if x∗ is a minimizer of f .

Therefore, the problem
minimize f(x)

is equivalent to solving

minimize fη(x) = inf
u

{
f(u) +

1

2η
∥u− x∥22

}
.

We know that fη is convex by Proposition 20.3. Hence, we can attempt to solve the problem by
gradient descent. By Proposition 20.7, the gradient of fη is given by

∇fη(x) =
1

η
(x− proxηf (x)).
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Moreover, fη is (1/η)-smooth by Proposition 20.5. Hence, the gradient descent update rule proceeds
with step size η given as follows

xt+1 = xt − η∇fη(xt) = proxηf (xt).

This is precisely the update rule of the proximal point algorithm! This implies that the proximal
point algorithm is equivalent to gradient descent applied to the smoothed objective.
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