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1 Outline

In this lecture, we review some mathematical backgrounds that constantly appear throughout the
course. We mainly discuss topics in linear algebra. We should be comfortable with every concept
mentioned in this lecture.

2 Inner product, outer product, and norms

A d-dimensional vector v ∈ Rd is a d× 1 matrix. v is also called a “column” vector, and it can also
be written as (v1, . . . , vd)

⊤ to make its coordinates explicit.

The inner product of two vectors u, v ∈ Rd is defined as
∑d

i=1 uivi, and we often denote it by u · v,
⟨u, v⟩, and u⊤v. The outer product of u and v is the d× d matrix given by uv⊤ whose entry at row
i and column j is uivj .

Given a vector v ∈ Rd, its ℓp-norm for p ≥ 1 is defined as ∥v∥p = (
∑d

i=1 |vi|p)1/p. As a special case,
the ℓ2 norm is called the Euclidean norm. Note that the ℓ2 norm ∥v∥2 is the square root of the
inner product v · v = v⊤v. Moreover, the ℓ∞-norm is defined as ∥v∥∞ = max {|vi| : i = 1, . . . , d},
and the ℓ0-norm, denoted ∥v∥0, is defined as the number of nonzero coordinates of v.

In general, a norm is defined as follows.

Definition 1.1. A norm ∥ · ∥ on Rd is a real-valued function with the following properties.

1. Subadditivity/Triangle inequality: ∥u+ v∥ ≤ ∥u∥+ ∥v∥ for any u, v ∈ Rd.

2. Absolute homogeneity: ∥αv∥ = |α| · ∥v∥ for any v ∈ Rd and any scalar α ∈ R.

3. Positive definiteness: if ∥v∥ = 0, then v = 0.

Definition 1.2. Given a norm ∥ · ∥ on Rd, the associated dual norm, denoted ∥ · ∥∗, is defined as

∥u∥∗ = sup
{
u⊤v : ∥v∥ ≤ 1

}
for any u ∈ Rd.

It can be shown that the dual norm is also a norm and that the dual of the dual norm is the
original norm, i.e., ∥x∥∗∗ = ∥x∥ for any x ∈ Rd. For example, the dual of the Euclidean norm is
the Euclidean norm itself. The dual of the ℓ∞ norm is the ℓ1 norm, while the dual of the ℓp norm
for p ≥ 1 is the ℓq norm where q satisfies 1/p+ 1/q = 1. The dual of the ℓ1 norm is the ℓ∞ norm.

Theorem 1.3. For any u, v ∈ Rd, we have u⊤v ≤ ∥u∥∗ · ∥v∥.

Proof. Note that

u⊤v = u⊤
v

∥v∥
· ∥v∥ ≤ ∥u∥∗ · ∥v∥

where the equality follows from the absolute homogeneity of the norm ∥·∥ and the inequality follows
from the definition of dual norm as ∥v/∥v∥∥ = 1.

1



3 Linear independence, subspace, span, dimension, and basis

Let v1, . . . , vk ∈ Rd be d-dimensional vectors. A linear combination of the vectors is
∑k

i=1 αiv
i for

some α1, . . . , αk ∈ R. We say that vectors v1, . . . , vk are linearly independent if there is no way
we can write a vector as a linear combination of the others. Equivalently, v1, . . . , vk are linearly
independent if the following is satisfied: if

∑k
i=1 αiv

i = 0, then we must have α1 = · · · = αk = 0.
Otherwise, we say that the vectors are linearly dependent.

We call V ⊆ Rd a (linear) subspace if V is closed under addition and scaling, i.e., u + v ∈ V for
any u, v ∈ V and α · v ∈ V for any v ∈ V and α ∈ R. The span of vectors v1, . . . , vk is the set of
all linear combinations of the vectors, i.e., {

∑k
i=1 αiv

i : α1, . . . , αk ∈ R}. Note that the span is a
subspace. In fact, any subspace is the span of some vectors, and here, we say that the subspace is
spanned by the vectors.

The dimension of subspace V is defined as the maximum number of linearly independent vectors
in V . When the dimension of subspace V is r, any set of r linearly independent vectors in V is
called a basis.

4 Projection to a subspace

If two vectors u and v are orthogonal (perpendicular), then u⊤v = 0. The angle θ between two
vectors u and v can be measured by

cos θ =
u⊤v

∥u∥2 · ∥v∥2
.

The projection of vector u onto the line spanned by v is

u⊤v

∥v∥22
· v.

Note that the ℓ2 norm of the projection is precisely ∥u∥2 · | cos θ| where θ is the angle between u
and v.

Given a subspace in Rd, vectors v1, . . . , vr form an orthonormal basis if

• r is the dimension of the subspace (basis),

• v1, . . . , vr are pairwise orthogonal, and

• ∥v1∥2 = · · · = ∥vr∥2 = 1 (normalized).

Any subspace in Rd admits an orthonormal basis, and we can obtain one using the Gram-Schmidt
method.

Given a subspace V in Rd with an orthonormal basis v1, . . . , vr, the projection of vector u to
subspace V can be computed by

r∑
i=1

u⊤vi · vi.
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5 Matrix rank, null space, column space, and orthogonal comple-
ment

Given an n×d matrix A, the rank of A is defined as the maximum number of linearly independent
columns of A1. The null space of A, denoted null(A), is defined as {x ∈ Rd : Ax = 0}, and the
column space of A, denoted col(A), is defined as {y ∈ Rn : y = Ax for some x ∈ Rd}. The null
space is the collection of vectors that are orthogonal to the rows of A, and the column space is the
subspace spanned by the columns of A.

When A is an n× n square matrix, the following statements are equivalent.

• A is invertible,

• det(A) ̸= 0,

• null(A) = {0},

• col(A) = Rn.

Given a subspace V in Rd, the orthogonal complement of V is defined as

V ⊥ = {u ∈ Rd : u⊤v = 0 for all v ∈ V }.

In particular, we have (V ⊥)⊥ = V . Note that null(A), null(A⊤), col(A), and col(A⊤) are all
subspaces, and moreover, we have

(null(A))⊥ = col(A⊤), (col(A))⊥ = null(A⊤).

6 Symmetric matrices, eigenvalues, eigenvectors, and positive semidef-
inite matrices

Let M be a d × d square matrix. Then we say that M is symmetric if M = M⊤, i.e., Mij = Mji

for any i, j ∈ [d]2. We say that (λ, v) is an eigenvalue-eigenvector pair for M if Mv = λv. In fact,
any symmetric matrix M satisfies the following properties.

• All the eigenvalues of M are real.

• The eigenvectors corresponding to distinct eigenvalues are orthogonal.

Theorem 1.4. Let M be a symmetric matrix. Then M can be written as M = QΛQ⊤ where

1. Q is an orthonormal matrix, i.e. Q⊤Q = QQ⊤ = I, whose columns are the eigenvectors of
M ,

2. Λ is a diagonal matrix whose diagonal entries are the eigenvalues of M .

Here, QΛQ⊤ is called an eigen decomposition of M . Therefore, any d× d symmetric matrix M can
be expressed as

M =
d∑

i=1

λiv
ivi⊤

where each (λi, v
i) is an eigenpair.

1Exercise: Check that we can replace columns by rows in the definition.
2Here, [d] simply denotes {1, . . . , d}.
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Definition 1.5. We say that a symmetric matrix is positive semidefinite (PSD) if all its eigenvalues
are nonnegative.

Theorem 1.6. Let M be a d× d symmetric matrix. Then M is PSD if and only if x⊤Mx ≥ 0 for
all x ∈ Rd.

Proof. Since M is symmetric, we can write M as M =
∑d

i=1 λiv
ivi⊤. In particular, v1, . . . , vd

form an orthonormal basis of Rd. Then for any x ∈ Rd, there exist scalars α1, . . . , αd so that
x =

∑d
i=1 αiv

i. Then x⊤Mx ≥ 0 if and only if(
d∑

i=1

αiv
i

)⊤( d∑
i=1

λiv
ivi⊤

)(
d∑

i=1

αiv
i

)
=

d∑
i=1

α2
iλi ≥ 0.

Hence, x⊤Mx ≥ 0 for all x ∈ Rd if and only if λi’s are all nonnegative, as required.
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