IE 539: Convex Optimization KAIST, Fall 2023
Lecture #19: Fenchel duality November 13, 2023
Lecturer: Dabeen Lee

1 Outline
In this lecture, we study

e Fenchel duality.

e Fenchel conjugate.

2 Fenchel duality
The Fenchel conjugate of a function f : R* — R is given by

Fy) = sw {yTe-f@)}.

zedom(f)
As y"2 — f(x) is linear in y, the conjugate function is always convex, regardless of f.

Lemma 19.1 (Fenchel-Young inequality). For x € dom(f) and y € dom(f*),
f@)+ f*(y) 2y
Proof. Note that f*(y) = sup,cdom(s) (y'o— f(x)) >y z— f(z). O

We discussed Lagrangian duality, and in fact, we can derive the Lagrangian dual function based on
the conjugate function. Consider

minimize f(x)
subject to Az =b (19.1)
Czx <d.

Then the associated Lagrangian dual function is given by
a0\ 1) = min { f(&) + AT (Cz = d) + " (Az — b)}
= —d" A=b"p+ H}Bin {f(a:) +(CTA+ ATM)Tx}
=—d A=b"p— sgp {—f(x) —(CTA+ AT,u)T:L‘}
=—d A=bpu—f(=C"A=ATp).
Note that the domain of g(A, u) is
dom(g) = {(A,p) s ~CTA—ATp € dom(f")}.
Then the Lagrangian dual problem is given by
maximize —d'A—b'pu— f*(—=C'A—ATp)
subject to A >0 (19.2)
—C"A = ATy e dom(f*).
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In particular, when there is no inequality constraint, the associated Lagrangian dual function is
given by

a(u) = =b"p— " (=ATp),
and the Lagrangian dual problem is given by
maximize —b'pu— f*(—A"p)

19.3
subject to  — A"y € dom(f*). (19:3)

2.1 Fenchel conjugate examples

Example 19.2. When f(z) = c¢'z + d over 2 € RY,
d, ify=
Fy=swp@la—co-—d=¢ " "I 0
2€Rd 400, otherwise.
Example 19.3. When f(z) = log(1 + €*) over z € R,

ylogy + (1 —y)log(l —y), if0<y<l,

f*(y) = sup (yz —log(1 + €*)) = €0, if y € {0,1},
ver 400, otherwise.

Example 19.4. When f(z) = (1/2)2"Qx + p'z over 2 € R? for some positive definite Q,

f*(y) = sup <l/Tx - leQfU - pTﬂU) .

z€R 2

Note that the maximum is attained at = Q™' (y — p). Therefore,

* 1 -
Fw)=50-»"Q" w—p)
Here,
VIy) =Q  (y—n),
which implies that Vf(Vf*(y)) = y and
V) = (VH ).
Example 19.5. When f(z) = Z?:l z;logz; over z € RY
d d d
f*(y) = sup (yT:U — Zazz log a:z> = sup (Z x;i(y; — log xz)> = Zeyi*l.
mGR‘j_+ i=1 xERfiH_ i=1 i=1

Example 19.6. When f(X) = —logdet X over X € S,

[*(Y)= sup (tr(YTX) + log det X) .
Xesd,

It is known that Vlogdet X = X ~!. Then the supremum is attained at X = —Y !, and therefore,

1Y) =—d—logdet(-Y).
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3 Fenchel conjugate

3.1 Some properties

The following statements hold.

o Let f(x1,22) = fi(x1) + fa(w2). Then f*(y1,y2) = fi(y1) + /5 (12)-
e Let g(x) = f(x) +c'z+d. Then g*(y) = f*(y — ¢) — d.
o Let g(x) = f(z —b). Then g*(y) =bTy + f*(y).

o Let f(z) = infuty=s {g(u) + h(v)}. Then f*(y) = g*(y) + h*(y).
Lemma 19.7. For any closed function f : R¢ — R, its Fenchel conjugate f* is closed and convez.

Proof. We have already observed that f* is convex. Let h, : R? — R for any € dom(f) be defined
as hz(y) =y'x — f(x). Note that

epi(hs) = {(5,8) €RT X R: ¢ > yTa — f(x)}
is closed. By definition, we have f*(y) = supgcdom(s){h«(y)}, implying in turn that
epi(f*) = m epi(hy).
zedom(f)

As the intersection of arbitrarily many closed sets is closed, epi(f*) is closed, and therefore, f* is
closed. O

Lemma 19.8. For any function f : R® — R, we have f** < f.
Proof. Let x € dom(f) Note that if x — z 7é 0, then sup,cpa {y x—2z)+ f(z } +oo. If z = =,
we have sup,cra {y x—2z)+ f(z } f(x). Therefore,

f(x)= inf sup {yT(:E—z) +f(z)}.

ze€dom(f) ycRd

Note that
inf su Tz —2)+ f(z > su inf o —2)+ f(z
Zedom(f)y@@{y (2= 2)+ (=)} y@gzedomm{y (z—2)+ f(2)}
T . T
= su x4+ inf —y' z+ f(z }
yeﬂgd {y Zedom(f){ Y f( )}
= sup {yTw — sup {yTz - f(Z)}}
yERY z€dom(f)
T *
= sup 1y = — f*(y)
sup, { J
> sup {nyv—f*(y)}
yedom(f*)
= ().
Therefore, f(x) > f**(z) for any = € dom(f), and thus f > f**. O
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When f is closed and convex, the equality holds, i.e., f** = f. To show this, we need the following
theorem.

Theorem 19.9 (Strict point-to-convex set separation). Let C C R? be a closed convex set and
y & C. Then infyec ||z — y|| > 0. Furthermore, there exists o € R? and 8 € R such that

a'z>p Vred,
aTy<B.

Lemma 19.10. For a closed convex function f : R — R, we have f** = f.

Proof. Next, assume that f is closed and convex. We will show that epi(f) = epi(f**). As f > f**,
we already know that epi(f) C epi(f**). Suppose for a contradiction that there exists & such that
(z, f**(z)) ¢ epi(f). Then, by Theorem 19.9, there exists a € R?, v € R, and 3 € R such that

o'z +~t>p8 Y(zt) € epi(f),
a'Z+y (@) < B.

Let 6 = 8 — (a'z +~f**(2)) > 0. Then for any (z,t) € epi(f),
(aTx +7t) — (an + vf**(i)) > 6 - (ozTJE +’yf**(§:)> =6>0.

Here, t can be arbitrarily large with (z,t) € epi(f), so v > 0. Suppose that v = 0. Let € be a
sufficiently small number and g € dom(f*). Now consider

((a —ep)Ta+ et) - ((a — )Tz + ef**(g:«)) So—e@r—t+7 T+ f3T)).

inf { ((a—ep) atet) = ((a—ep) a+ef*@)}

(x,t)cepi(f
inf 5 — r—t+y T+ f(z
L e’ gz + ))}
> inf d— y x— f(x)+ gz + f**(f))}
xedom (f)

=6 —e(f* ()~ T+ (@)

Making e sufficiently small, we have

Lomt { ((a —eg)Tz+ et) — ((a )zt e f**(gz))} 0.

Therefore, we have just argued that there exists a € R, v € R, and 6 > 0 such that v > 0 and
inf {(aTx—i—'yt) — (aTi—i—'yf**(a_c))} >4§>0.
(z,t)€epi(f)

Then

Lot {la/)T(@=2)+t =@} = 8/v >0,



Note that

inf {(o/n) @-)+t— 7@} = it {(@/n) (@-2)+fx) - @)}

(z,t)€epi(f) zedom(f)

= (~a/y) Tz =@~ sw {(~a/7) e~ 1)}

zedom(f)

= (—a/y) Tz - (@) - [ (—a/y)
T _

where the inequality follows from the Fenchel-Young inequality. O
3.2 Moreau decomposition

Remember that for a quadratic function with a positive definite matrix given by

fa) = 5o Qu 4y,

we have Vf*(y) = (Vf)~1(y). This is implies that if y = Vf(x), then x = Vf*(y). In general, the
subdifferential of the conjugate is the inverse of the subdifferential.

Theorem 19.11. Let f : R* — R be a closed and convex function. Then the following statements
are equivalent.

(i) y € 0f(v),
(it) x € Of(y),
(iii) y'x = f(z) + f*(y)-
Proof. Assume that y € 0f(z). Then Z € dom(f) and 0 € —y + 9f(Z). Consider

)= swp Fla—f@)=— inf (=g a+f(2)).
z€dom(f) zedom(f)

Since 0 € —y + 9f(Z), & is the minimizer, and therefore,
@) =-(-g'z+f@)=9"2 - f(2).

Hence, y € dom(f*). Again, the definition of f*(y) implies that for any y € dom(f*),
Py zy'z—f@)=y-9'z+ @

Therefore, Z is a subgradient of f* at g, and thus z € df*(y). Hence, we have just proved the
direction (i) — (¢it) — (i7). Since f is closed and convex, f* is closed and convex and f = f**.
Then, by symmetry, we can also argue that (i) — (iii) — (¢). Therefore, (i), (ii), and (éii) are all
equivalent. ]

Using the theorem, we can show the following result.
Theorem 19.12 (Moreau decomposition). Let f : R? = R be a closed convex function. Then

T = prox () + prox s« ().
)



Proof. Let u = prox(z), then x —u € 9f(u). This implies that u € 0f*(z — u). Let v = x — w.
Then we have z — v € df*(v), implying in turn that v = prox;.(z). Therefore,

prox;(z) + proxm(z) =u+v=u+2r —u=ux,
as required. ]

Example 19.13. Let V C R? be a linear subspace, and let f = I;y : R — R be the indicator
function of U. Note that

1) = swsey {y"a} = Iyi ().
Then

1 .
prox(x) = argmin {Iv(u) + —|lu— :c||%} = projy (z),
ueRd 2

and

: 1 :
Prox g« () = arg;}g;n {IvJ_ (u) + §||u — m||%} = projy . (x).
u

Therefore, the Moreau decomposition theorem states that
2 = projy (x) + projy .« (x).
3.3 Fenchel dual

Consider the following composite optimization problem.
minimize f(z) + g(Ax) (19.4)
for some matrix A € R™*?. This problem is equivalent to

minimize f(z) + g(y) (19.5)
subject to y = Ax. '

Then the Lagrangian dual function is given by

inf  f(2) +g(y) + T (Az —y) = —sup {~(z) — g(y) + p" (~Az + 1) }
T,y T,y

— —sup {(-AM)% —f@)+pu'y— g(y)}

.y
——sup{ (-ATw) e — f@) } —sup {uTy ~ 9lv) }
=—f"(=AT) —g" ().
Therefore, the Lagrangian dual problem is given by
maximize — f*(—A"p) — g*(p).

Moreover, note that (19.5) is linearly constrained. If f and g are convex, then Slater’s condition
holds (assuming dom(f) = R? and dom(g) = R™), in which case, strong duality holds. Therefore,

minimize f(z) + g(Az) = minmax f(z) + g(y) + p' (Az — )

zy
= maxmin f(z) + g(y) + ' (Az —y)

= maximize — f*(=ATp) — g% ().
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Example 19.14. Given a convex set C', consider

minimize f(x)
subject to Ax —be C.

Using the indicator function, it is equivalent to
minimize f(z) 4+ Ic(Ax — b).

We can set g(y) = Ic(y — b). Then

g7 = sup_ {uTu} = sup {MT(U + b)} =b"p+ I ().

Hence, the Fenchel dual is given by
maximize —b'p— f*(—ATp) — I5(w).
Example 19.15. Consider

minimize f(x)
subject to Ax =b.

The constraint is equivalent to Az — b € {0}. Since {0} is a trivial vector space and ({0})* = R,
we have that If{ko} (y) = 0 for any y € R?. Then the corresponding dual is

maximize —b'pu— f*(—Ap).
Example 19.16. Consider

minimize f(x)
subject to  ||[Az —b|| <1

The constraint is equivalent to Ax —b € C ={y: ||y| <1}. Note that

IE(p) = sup gy = ||ulls
lyl<1

In this case, the Fenchel dual is given by
maximize —b'p— f*(—A"p) — ||pl|+.
Example 19.17. Consider
minimize f(z) + ||z||
for some A > 0. Here, define g(y) = |ly||. Note that
0" () = sup { T Jull} = e )
where C' = {u : ||u|lx < 1}. Then the corresponding dual is

maximize — f*(—p)

subject to ||ull« < 1.
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