
IE 539: Convex Optimization KAIST, Fall 2023
Lecture #19: Fenchel duality November 13, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

• Fenchel duality.

• Fenchel conjugate.

2 Fenchel duality

The Fenchel conjugate of a function f : Rd → R is given by

f∗(y) = sup
x∈dom(f)

{
y⊤x− f(x)

}
.

As y⊤x− f(x) is linear in y, the conjugate function is always convex, regardless of f .

Lemma 19.1 (Fenchel-Young inequality). For x ∈ dom(f) and y ∈ dom(f∗),

f(x) + f∗(y) ≥ y⊤x.

Proof. Note that f∗(y) = supx∈dom(f)(y
⊤x− f(x)) ≥ y⊤x− f(x).

We discussed Lagrangian duality, and in fact, we can derive the Lagrangian dual function based on
the conjugate function. Consider

minimize f(x)

subject to Ax = b

Cx ≤ d.

(19.1)

Then the associated Lagrangian dual function is given by

q(λ, µ) = min
x

{
f(x) + λ⊤(Cx− d) + µ⊤(Ax− b)

}
= −d⊤λ− b⊤µ+min

x

{
f(x) + (C⊤λ+A⊤µ)⊤x

}
= −d⊤λ− b⊤µ− sup

x

{
−f(x)− (C⊤λ+A⊤µ)⊤x

}
= −d⊤λ− b⊤µ− f∗(−C⊤λ−A⊤µ).

Note that the domain of q(λ, µ) is

dom(q) =
{
(λ, µ) : −C⊤λ−A⊤µ ∈ dom(f∗)

}
.

Then the Lagrangian dual problem is given by

maximize − d⊤λ− b⊤µ− f∗(−C⊤λ−A⊤µ)

subject to λ ≥ 0

− C⊤λ−A⊤µ ∈ dom(f∗).

(19.2)
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In particular, when there is no inequality constraint, the associated Lagrangian dual function is
given by

q(µ) = −b⊤µ− f∗(−A⊤µ),

and the Lagrangian dual problem is given by

maximize − b⊤µ− f∗(−A⊤µ)

subject to −A⊤µ ∈ dom(f∗).
(19.3)

2.1 Fenchel conjugate examples

Example 19.2. When f(x) = c⊤x+ d over x ∈ Rd,

f∗(y) = sup
x∈Rd

(y⊤x− c⊤x− d) =

{
−d, if y = c,

+∞, otherwise.

Example 19.3. When f(x) = log(1 + ex) over x ∈ R,

f∗(y) = sup
x∈R

(yx− log(1 + ex)) =


y log y + (1− y) log(1− y), if 0 < y < 1,

0, if y ∈ {0, 1},
+∞, otherwise.

Example 19.4. When f(x) = (1/2)x⊤Qx+ p⊤x over x ∈ Rd for some positive definite Q,

f∗(y) = sup
x∈R

(
y⊤x− 1

2
x⊤Qx− p⊤x

)
.

Note that the maximum is attained at x = Q−1(y − p). Therefore,

f∗(y) =
1

2
(y − p)⊤Q−1(y − p).

Here,
∇f∗(y) = Q−1(y − p),

which implies that ∇f(∇f∗(y)) = y and

∇f∗(y) = (∇f)−1(y).

Example 19.5. When f(x) =
∑d

i=1 xi log xi over x ∈ Rd
++,

f∗(y) = sup
x∈Rd

++

(
y⊤x−

d∑
i=1

xi log xi

)
= sup

x∈Rd
++

(
d∑

i=1

xi(yi − log xi)

)
=

d∑
i=1

eyi−1.

Example 19.6. When f(X) = − log detX over X ∈ Sd++,

f∗(Y ) = sup
X∈Sd++

(
tr(Y ⊤X) + log detX

)
.

It is known that ∇ log detX = X−1. Then the supremum is attained at X = −Y −1, and therefore,

f∗(Y ) = −d− log det(−Y ).
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3 Fenchel conjugate

3.1 Some properties

The following statements hold.

• Let f(x1, x2) = f1(x1) + f2(x2). Then f∗(y1, y2) = f∗
1 (y1) + f∗

2 (y2).

• Let g(x) = f(x) + c⊤x+ d. Then g∗(y) = f∗(y − c)− d.

• Let g(x) = f(x− b). Then g∗(y) = b⊤y + f∗(y).

• Let f(x) = infu+v=x {g(u) + h(v)}. Then f∗(y) = g∗(y) + h∗(y).

Lemma 19.7. For any closed function f : Rd → R, its Fenchel conjugate f∗ is closed and convex.

Proof. We have already observed that f∗ is convex. Let hx : Rd → R for any x ∈ dom(f) be defined
as hx(y) = y⊤x− f(x). Note that

epi(hx) = {(y, t) ∈ Rd × R : t ≥ y⊤x− f(x)}

is closed. By definition, we have f∗(y) = supx∈dom(f){hx(y)}, implying in turn that

epi(f∗) =
⋂

x∈dom(f)

epi(hx).

As the intersection of arbitrarily many closed sets is closed, epi(f∗) is closed, and therefore, f∗ is
closed.

Lemma 19.8. For any function f : Rd → R, we have f∗∗ ≤ f .

Proof. Let x ∈ dom(f). Note that if x− z ̸= 0, then supy∈Rd

{
y⊤(x− z) + f(z)

}
= +∞. If z = x,

we have supy∈Rd

{
y⊤(x− z) + f(z)

}
= f(x). Therefore,

f(x) = inf
z∈dom(f)

sup
y∈Rd

{
y⊤(x− z) + f(z)

}
.

Note that

inf
z∈dom(f)

sup
y∈Rd

{
y⊤(x− z) + f(z)

}
≥ sup

y∈Rd

inf
z∈dom(f)

{
y⊤(x− z) + f(z)

}
= sup

y∈Rd

{
y⊤x+ inf

z∈dom(f)

{
−y⊤z + f(z)

}}

= sup
y∈Rd

{
y⊤x− sup

z∈dom(f)

{
y⊤z − f(z)

}}
= sup

y∈Rd

{
y⊤x− f∗(y)

}
≥ sup

y∈dom(f∗)

{
y⊤x− f∗(y)

}
= f∗∗(x).

Therefore, f(x) ≥ f∗∗(x) for any x ∈ dom(f), and thus f ≥ f∗∗.
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When f is closed and convex, the equality holds, i.e., f∗∗ = f . To show this, we need the following
theorem.

Theorem 19.9 (Strict point-to-convex set separation). Let C ⊆ Rd be a closed convex set and
y ̸∈ C. Then infx∈C ∥x− y∥ > 0. Furthermore, there exists α ∈ Rd and β ∈ R such that

α⊤x > β ∀x ∈ C,

α⊤y < β.

Lemma 19.10. For a closed convex function f : Rd → R, we have f∗∗ = f .

Proof. Next, assume that f is closed and convex. We will show that epi(f) = epi(f∗∗). As f ≥ f∗∗,
we already know that epi(f) ⊆ epi(f∗∗). Suppose for a contradiction that there exists x̄ such that
(x̄, f∗∗(x̄)) /∈ epi(f). Then, by Theorem 19.9, there exists α ∈ Rd, γ ∈ R, and β ∈ R such that

α⊤x+ γt > β ∀(x, t) ∈ epi(f),

α⊤x̄+ γf∗∗(x̄) < β.

Let δ = β −
(
α⊤x̄+ γf∗∗(x̄)

)
> 0. Then for any (x, t) ∈ epi(f),(

α⊤x+ γt
)
−
(
α⊤x̄+ γf∗∗(x̄)

)
> β −

(
α⊤x̄+ γf∗∗(x̄)

)
= δ > 0.

Here, t can be arbitrarily large with (x, t) ∈ epi(f), so γ ≥ 0. Suppose that γ = 0. Let ϵ be a
sufficiently small number and ȳ ∈ dom(f∗). Now consider(

(α− ϵȳ)⊤x+ ϵt
)
−
(
(α− ϵȳ)⊤x̄+ ϵf∗∗(x̄)

)
> δ − ϵ(ȳ⊤x− t+ ȳ⊤x̄+ f∗∗(x̄)).

inf
(x,t)∈epi(f)

{(
(α− ϵȳ)⊤x+ ϵt

)
−
(
(α− ϵȳ)⊤x̄+ ϵf∗∗(x̄)

)}
≥ inf

(x,t)∈epi(f)

{
δ − ϵ(ȳ⊤x− t+ ȳ⊤x̄+ f∗∗(x̄))

}
≥ inf

x∈dom(f)

{
δ − ϵ(ȳ⊤x− f(x) + ȳ⊤x̄+ f∗∗(x̄))

}
= δ − ϵ(f∗(ȳ)− ȳ⊤x̄+ f∗∗(x̄)).

Making ϵ sufficiently small, we have

inf
(x,t)∈epi(f)

{(
(α− ϵȳ)⊤x+ ϵt

)
−
(
(α− ϵȳ)⊤x̄+ ϵf∗∗(x̄)

)}
> 0.

Therefore, we have just argued that there exists α ∈ Rd, γ ∈ R, and δ > 0 such that γ > 0 and

inf
(x,t)∈epi(f)

{(
α⊤x+ γt

)
−
(
α⊤x̄+ γf∗∗(x̄)

)}
≥ δ > 0.

Then
inf

(x,t)∈epi(f)

{
(α/γ)⊤(x− x̄) + t− f∗∗(x̄)

}
≥ δ/γ > 0.
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Note that

inf
(x,t)∈epi(f)

{
(α/γ)⊤(x− x̄) + t− f∗∗(x̄)

}
= inf

x∈dom(f)

{
(α/γ)⊤(x− x̄) + f(x)− f∗∗(x̄)

}
= (−α/γ)⊤x̄− f∗∗(x̄)− sup

x∈dom(f)

{
(−α/γ)⊤x− f(x)

}
= (−α/γ)⊤x̄− f∗∗(x̄)− f∗(−α/γ)

≤ (−α/γ)⊤x̄− (−α/γ)⊤x̄

= 0

where the inequality follows from the Fenchel-Young inequality.

3.2 Moreau decomposition

Remember that for a quadratic function with a positive definite matrix given by

f(x) =
1

2
x⊤Qx+ p⊤x,

we have ∇f∗(y) = (∇f)−1(y). This is implies that if y = ∇f(x), then x = ∇f∗(y). In general, the
subdifferential of the conjugate is the inverse of the subdifferential.

Theorem 19.11. Let f : Rd → R be a closed and convex function. Then the following statements
are equivalent.

(i) y ∈ ∂f(x),

(ii) x ∈ ∂f∗(y),

(iii) y⊤x = f(x) + f∗(y).

Proof. Assume that ȳ ∈ ∂f(x̄). Then x̄ ∈ dom(f) and 0 ∈ −ȳ + ∂f(x̄). Consider

f∗(ȳ) = sup
x∈dom(f)

(ȳ⊤x− f(x)) = − inf
x∈dom(f)

(−ȳ⊤x+ f(x)).

Since 0 ∈ −ȳ + ∂f(x̄), x̄ is the minimizer, and therefore,

f∗(ȳ) = −(−ȳ⊤x̄+ f(x̄)) = ȳ⊤x̄− f(x̄).

Hence, ȳ ∈ dom(f∗). Again, the definition of f∗(y) implies that for any y ∈ dom(f∗),

f∗(y) ≥ y⊤x̄− f(x̄) = (y − ȳ)⊤x̄+ f∗(ȳ).

Therefore, x̄ is a subgradient of f∗ at ȳ, and thus x̄ ∈ ∂f∗(ȳ). Hence, we have just proved the
direction (i) → (iii) → (ii). Since f is closed and convex, f∗ is closed and convex and f = f∗∗.
Then, by symmetry, we can also argue that (ii) → (iii) → (i). Therefore, (i), (ii), and (iii) are all
equivalent.

Using the theorem, we can show the following result.

Theorem 19.12 (Moreau decomposition). Let f : Rd → R be a closed convex function. Then

x = proxf (x) + proxf∗(x).
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Proof. Let u = proxf (x), then x − u ∈ ∂f(u). This implies that u ∈ ∂f∗(x − u). Let v = x − u.
Then we have x− v ∈ ∂f∗(v), implying in turn that v = proxf∗(x). Therefore,

proxf (x) + proxf∗(x) = u+ v = u+ x− u = x,

as required.

Example 19.13. Let V ⊆ Rd be a linear subspace, and let f = IV : Rd → R be the indicator
function of U . Note that

f∗(y) = supx∈V

{
y⊤x

}
= IV ⊥(y).

Then

proxf (x) = argmin
u∈Rd

{
IV (u) +

1

2
∥u− x∥22

}
= projV (x),

and

proxf∗(x) = argmin
u∈Rd

{
IV ⊥(u) +

1

2
∥u− x∥22

}
= projV ⊥(x).

Therefore, the Moreau decomposition theorem states that

x = projV (x) + projV ⊥(x).

3.3 Fenchel dual

Consider the following composite optimization problem.

minimize f(x) + g(Ax) (19.4)

for some matrix A ∈ Rm×d. This problem is equivalent to

minimize f(x) + g(y)

subject to y = Ax.
(19.5)

Then the Lagrangian dual function is given by

inf
x,y

f(x) + g(y) + µ⊤(Ax− y) = − sup
x,y

{
−f(x)− g(y) + µ⊤(−Ax+ y)

}
= − sup

x,y

{
(−A⊤µ)⊤x− f(x) + µ⊤y − g(y)

}
= − sup

x

{
(−A⊤µ)⊤x− f(x)

}
− sup

x

{
µ⊤y − g(y)

}
= −f∗(−A⊤µ)− g∗(µ).

Therefore, the Lagrangian dual problem is given by

maximize − f∗(−A⊤µ)− g∗(µ).

Moreover, note that (19.5) is linearly constrained. If f and g are convex, then Slater’s condition
holds (assuming dom(f) = Rd and dom(g) = Rm), in which case, strong duality holds. Therefore,

minimize f(x) + g(Ax) = min
x,y

max
µ

f(x) + g(y) + µ⊤(Ax− y)

= max
µ

min
x,y

f(x) + g(y) + µ⊤(Ax− y)

= maximize − f∗(−A⊤µ)− g∗(µ).
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Example 19.14. Given a convex set C, consider

minimize f(x)

subject to Ax− b ∈ C.

Using the indicator function, it is equivalent to

minimize f(x) + IC(Ax− b).

We can set g(y) = IC(y − b). Then

g∗(µ) = sup
u−b∈C

{
µ⊤u

}
= sup

u∈C

{
µ⊤(u+ b)

}
= b⊤µ+ I∗C(µ).

Hence, the Fenchel dual is given by

maximize − b⊤µ− f∗(−A⊤µ)− I∗C(µ).

Example 19.15. Consider

minimize f(x)

subject to Ax = b.

The constraint is equivalent to Ax− b ∈ {0}. Since {0} is a trivial vector space and ({0})⊥ = Rd,
we have that I∗{0}(y) = 0 for any y ∈ Rd. Then the corresponding dual is

maximize − b⊤µ− f∗(−A⊤µ).

Example 19.16. Consider

minimize f(x)

subject to ∥Ax− b∥ ≤ 1

The constraint is equivalent to Ax− b ∈ C = {y : ∥y∥ ≤ 1}. Note that

I∗C(µ) = sup
∥y∥≤1

µ⊤y = ∥µ∥∗.

In this case, the Fenchel dual is given by

maximize − b⊤µ− f∗(−A⊤µ)− ∥µ∥∗.

Example 19.17. Consider

minimize f(x) + ∥x∥

for some λ > 0. Here, define g(y) = ∥y∥. Note that

g∗(µ) = sup
u

{
µ⊤u− ∥u∥

}
= IC(µ)

where C = {u : ∥u∥∗ ≤ 1}. Then the corresponding dual is

maximize − f∗(−µ)

subject to ∥µ∥∗ ≤ 1.
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