IE 539: Convex Optimization KAIST, Fall 2023
Lecture #18: Saddle point problem, Fenchel duality I November 8, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

e Saddle point problem,

e Fenchel duality.

2 Saddle point problem

Consider the following inequality constrained problem.
minimize T
mize f(z) | (18.1)
subject to  g;(x) <0 fori=1,...,m.
Note that

max L(z,\) = max {f(x) + Z)\lg,(:):)} .
= i=1

2>0

If gi(x) > 0 for some i € [m], then we can send \A; to +00, making £(z, A) arbitrarily large. On the
other hand, if g;(z) < 0 for all ¢ € [m], then maxy>o £(z, ) is attained at A = 0, in which case,
maxy>o L(z,\) = f(x). This observation implies that

minrilgé(ﬁ(x,)\) =min{f(z): gi(x) <0fori=1,...,m}.

Remember that the Lagrangian dual problem is given by

max q(N\) = max min L(z,N).

Then the weak duality theorem states that

min max £(z, A) > maxmin L(z, ).
T A>0 A>0 =

Moreover, if strong duality holds, then the equality holds as follows.

min max £(z, A\) = maxmin L(z, ).
z A>0 A>0 @

More generally, consider a function ¢(z,y) that is convex in x and concave in y. Then

i 18.2
min max ¢(z, y) (18.2)

where sets X and Y are convex is called a saddle point problem. Under certain conditions on X
and Y, the minimum and maximum can be swapped.

i max o(x,y) = ma min o(,y).

Such a result is called a minimax theorem, and the strong Lagrangian duality theorem is an example.
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2.1 Zero-sum game

Suppose that we have two adversarial players. Player 1 chooses from d actions i € [d] while player
2 chooses from m actions j € [m]. If player 1 chooses ¢ € [d| and player 2 chooses j € [m], then
player 1 loses a;; while player gains a;;. This is called a zero-sum game.

Both players can randomize their strategies, meaning that player 1 chooses x € Ag = {x € [0,1]% :
1"z = 1} and player 2 chooses y € A,,, = {y € [0,1]™ : 1Ty = 1}. Then 2" Ay is the expected loss
for player 1 and also the expected gain for player 2.

Suppose that player 1 knows player 2’s strategy, given by a vector y € A,,. Then player 1 will
choose a strategy x € Ay so that the expected loss can be minimized and incurs a loss of

min z ' Ay.
T€EA

Given that player 2 knows player 1 will do this for any y, player 2 should choose y to maximize the
expected gain so that player 2 obtains a gain of

max min z ' Ay.
YEA, TEA,

In fact, von Neumann’s minimax theorem states that it does not matter who moves first, because

max min z' Ay = min max z' Ay.
YEA, TEAY TEAG YEA,

2.2 Saddle point optimality

In general, we have the following relationship.

Theorem 18.1. Consider the saddle point problem (18.2). Then the following statement holds.

min ma. x > maxmin o(x,y).
z€X ye;{(b( Y) 2 ye;{xEX (x,y)

Proof. Note that for any (z,y) € X XY, we have ¢(x,y) > mingex ¢(x,y). Taking the maximum of
each side over y € Y, we obtain maxycy ¢(x,y) > maxycy mingex ¢(x,y). As this inequality holds
for every x € X, taking the minimum of the left-hand side over x € X preserves the inequality. If
done so, we deduce that minge x maxyey ¢(x,y) > maxycy mingex ¢(x,y), as required. O

We say that a solution (z*,y*) € X x Y is a saddle point to the problem mingex maxycy ¢(x,y) if

P(z",y) < o(z",y") < oz, y7)

for all (z,y) € X x Y. If (z*,y*) is a saddle point, then

Theorem 18.2. If (z*,y*) is a saddle point, then

. VR . .
gél)rgr;lea;cé(rc,y) o(z*,y") r;leaggggcb(x,y)



Proof. By definition, we obtain

* < * *) < mi ).
max $(2",y) < ¢(2",y") < ming(z,y")

Moreover, this implies that

gg(n;leagcﬁ(x y) < ¢(a”,y") < maxmin é(z,y")

By Theorem 18.1, it follows that the inequalities must hold with equality. O

A saddle point problem combines two convex optimization problems into one.
Primal : in < ¢(z) := ma
rim min {¢(ﬂf) ma o(x, y)}

Dual : max {¢(y) = ;Iél}(l ¢(x,y)} .

yey

For any (Z,y) € X x Y, Theorem 18.1 implies that

() = max ¢(Z,y) > min ¢(z, §) = ¢(y).

yey zeX

We say that a point (Z,7) € X X Y is an e-saddle point if

0<o(z)— 9(y) = X ¢(7,y) —mino(z,y) < e.

Note that if (z,7) € X x Y is an e-saddle point, then

#(z) —ming(z) <,

rzeX

max §(y) — 6(7) < .

yey

2.3 Primal-dual algorithm for saddle point problems

Let us consider an algorithm for solving the saddle point problem, whose pseudo-code is given as
in Algorithm 1. The algorithm is called the primal-dual subgradient method. Note that at each

Algorithm 1 Primal-dual subgradient method
Initialize x1 € X and y; € Y.
fort=1,...,7T—1do
Obtain g, € 0z¢(xt,y¢) and gy ¢ € Oyd(xt, yt)-
Update zy11 = projx (¢ — Mmge,) and yi11 = projy (y¢ + negy,) for some step size 7 > 0.
end for
Return x4 1.

iteration, we simultaneously update both the primal variables z and the dual variables y. We
assumed that ¢(x,y) is convex in x and concave in y. 0;¢(z,y) is the subdifferential of ¢(x,y) for
a fixed y, and dy¢(x,y) is the superdifferential of ¢(z,y) for a fixed z.



Theorem 18.3. Let 7 and yr be defined as
T - T -
5 — (z m) S o g - ( m) S
t=1 t=1 t=1 t=1

Then for any (z,y) € X x Y,

T
o(Zr,y) — ¢(x,9r) < % (\(%yl) — (2,93 + an!(gx,t,gy,t)H%) :
2 t=1

Assuming that H(gx,gy)H% < L? for any g, € 9,¢(x,y) and gy € Oyd(x,y) and that ||(z1,y1) —
(z,y)||3 < R?, we can set 1y = R/(L/T). Then for any (z,y) € X x Y,

o(Fr, ) — Bz, gr) < ot

3

In particular,
LR

ma o(Zr,y) — min o(z,9yr) < N

Then setting T = O(1/€?), we know that (Zr,yr) is an e-saddle point.
3 Fenchel duality

The Fenchel conjugate of a function f : R* — R is given by

f*(y) = sup {yTaﬁ—f(fB)}-

zedom(f)

As y"x — f(x) is linear in y, the conjugate function is always convex, regardless of f.

Lemma 18.4 (Fenchel-Young inequality). For x € dom(f) and y € dom(f*),
f@)+ f(y) 2 y'a

Proof. Note that f*(y) = sup,cqom(s) (y'z— f(x) >y z— f(z). O

We discussed Lagrangian duality, and in fact, we can derive the Lagrangian dual function based on
the conjugate function. Consider

minimize f(x)
subject to Ax =1b (18.3)
Cx <d.

Then the associated Lagrangian dual function is given by
a0 ) = min { f(@) + AT (Co —d) + T (Az — D)
= —d"A—b" i+ min {f(x) T+ ATM)T:U}
=—d" A—b"p— sup {—f(x) —(CTA+ ATM)T@”}
= —d'AN=bTpu—f(-CTA=ATp).
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Note that the domain of g(\, u) is
dom(q) = {()\,u) . —CTA—ATpe dom(f*)} .

Then the Lagrangian dual problem is given by

maximize —d'A—b'pu— f*(—C'A—ATp)
subject to A >0 (18.4)
—C"A = ATy e dom(f*).

In particular, when there is no inequality constraint, the associated Lagrangian dual function is
given by

g(p) = =b"p— f*(=ATp),
and the Lagrangian dual problem is given by

maximize —b'pu— f*(—A'p)

18.5
subject to  — ATy € dom(f*). (18:3)

3.1 Fenchel conjugate examples

Example 18.5. When f(z) = c¢'x +d over z € RY,

_d7 f =G,
Ffy)=sup(y'ew—clo—d) = no=e
2CRd 400, otherwise.

Example 18.6. When f(z) = log(1 + €*) over z € R,

ylogy+ (1 —y)log(l —y), if0<y<l,

f*(y) = sup (yz —log(1 +¢€")) = {0, if y € {0, 1},
veR 400, otherwise.

Example 18.7. When f(z) = (1/2)z" Qz + p'x over x € R? for some positive definite Q,

- (172 e ).

z€R

Note that the maximum is attained at x = Q= (y — p). Therefore,

)= %(y -9 Q' (y—p).

Here,
Vi) =Q vy —p)
which implies that Vf(Vf*(y)) = y and

Viy) = (V) ()



Example 18.8. When f(z) = Z?:l x;logx; over x € ]Rf‘]H,
d d d
f*(y) = sup (yTx - Zaz, log a:z> = sup (Z x;i(y; — log xz)> = Z evil,
16R1+ i=1 CEERi_'_ =1 =1

Example 18.9. When f(X) = —logdet X over X € S,

[*(Y)= sup (tr(YTX) + log det X) .
Xesd,

It is known that Vlogdet X = X~!. Then the supremum is attained at X = —Y !, and therefore,

1Y) =—d—logdet(-Y).
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