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1 Outline

In this lecture, we study

• KKT conditions,

• Lagrangian duality.

2 Karush-Kuhn-Tucker conditions

Remember that x∗ is an optimal solution to

min
x∈C

f(x)

where C is a convex set and f is differentiable if and only if

∇f(x∗)>(x− x∗) ≥ 0 ∀x ∈ C.

However, the structure of C may be arbitrary, which makes the condition difficult to verify. In this
section, we present another way of verifying optimality. Namely, Karu-Kuhn-Tucker conditions,
often referred to as KKT conditions.

2.1 Linear constraints

We consider problems of the following structure.

minimize f(x)

subject to Ax ≤ b
Cx = d

(17.1)

where

• A ∈ Rm×d and b ∈ Rm,

• C ∈ R`×d and d ∈ R`.

Theorem 17.1 (KKT conditions for linearly constrained problems). The linearly constrained prob-
lem as in (17.1) satisfies the following.

1. (Necessity) If x∗ is a feasible solution to (17.1) and f(x∗) is a local minimum, then there exist
λ∗ ∈ Rm+ and µ∗ ∈ R` such that

∇f(x∗)> + λ∗>A+ µ∗>C = 0 & λ∗>(Ax− b) = 0. (?)

2. (Sufficiency) If f is convex, x∗ is a feasible solution to (17.1), and there exist λ∗ ∈ Rm+ and
µ∗ ∈ R` satisfying (?), then x∗ is an optimal solution to (17.1).
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2.2 General convex constraints

We consider problems of the following structure.

minimize f(x)

subject to gi(x) ≤ 0 for i = 1, . . . ,m

hj(x) = 0 for j = 1, . . . , `

(17.2)

where

• f is convex,

• g1, . . . , gm are convex,

• h1, . . . , h` are affine.

Definition 17.2 (Slater’s condition). Suppose that g1, . . . , gk are affine and gk+1, . . . , gm are convex
functions that are not affine. Then we say that the problem (17.2) satisfies Slater’s condition if
there exists a solution x̄ such that

gi(x̄) ≤ 0 for i = 1, . . . , k, gi(x̄) < 0 for i = k + 1, . . . ,m, hj(x̄) = 0 for j = 1, . . . , `.

Theorem 17.3 (KKT conditions for convex constrained problems). The convex programming prob-
lem as in (17.2) satisfies the following.

1. (Necessity) Assume that Slater’s condition is satisfied. If x∗ is a feasible optimal solution
to (17.2), then there exist λ∗ ∈ Rm+ and µ∗ ∈ R` such that

∇f(x∗) +

m∑
i=1

λ∗i∇gi(x∗) +
∑̀
j=1

µ∗j∇hj(x∗) = 0 & λ∗i gi(x
∗) = 0 for all i = 1, . . . ,m. (??)

2. (Sufficiency) If x∗ is a feasible solution to (17.2) and there exist λ∗ ∈ Rm+ and µ∗ ∈ R`
satisfying (??), then x∗ is an optimal solution to (17.2).

3 Lagrangian duality

We again consider the following optimization problem

minimize f(x)

subject to gi(x) ≤ 0 for i = 1, . . . ,m

hj(x) = 0 for j = 1, . . . , `.

(17.3)

We consider the most general setting for which we do not impose the condition that the objective
and constraint functions are convex.
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3.1 Lagrangian dual problem

The Lagrangian function of (17.3) is given by

L(x, λ, µ) = f(x) +

m∑
i=1

λigi(x) +
∑̀
j=1

µjhj(x).

When the objective function f is convex, constraint functions g1, . . . , gm are convex, constraint
functions h1, . . . , h` are affine, and the multiplier λ ≥ 0, the Lagrangian function is convex in x for
any fixed λ and µ. Moreover, the Lagrangian function is affine in λ and µ for any fixed x.

The Lagrangian dual function of (17.3) is

q(λ, µ) = inf
x
L(x, λ, µ) = inf

x

f(x) +
m∑
i=1

λigi(x) +
∑̀
j=1

µjhj(x)

 .

Notice that the Lagrangian dual function is concave in (λ, µ), regardles of f , g1, . . . , gm, and
h1, . . . , h`. This is because L(x, λ, µ) is affine in λ and µ for any fixed x, and q(λ, µ) is a point-wise
minimum of affine functions.

Proposition 17.4. Let x be a feasible solution to (17.3), and λ ≥ 0. Then

f(x) ≥ q(λ, µ).

Proof. Since x is feasible, gi(x) ≤ 0 for i = 1, . . . ,m and hj(x) = 0 for j = 1, . . . , `. Then for any
λ ≥ 0, we have

m∑
i=1

λigi(x) +
∑̀
j=1

µjhj(x) ≤ 0.

This implies that
f(x) ≥ L(x, λ, µ).

Note that
q(λ, µ) = inf

x
L(x, λ, µ) ≤ L(x, λ, µ).

Therefore, f(x) ≥ q(λ, µ).

By Proposition 17.4, if (17.3) is unbounded below, the Lagrangian dual function q(λ, µ) = −∞ for
any λ ≥ 0.

With the Lagrangian dual function, we can provide a lower bound on the problem (17.3). The
Lagrangian dual problem is defined as

maximize q(λ, µ)

subject to λ ≥ 0.
(17.4)

We often call (17.3) as primal and (17.4) as the associated (Lagrangian) dual. The following result
states that the optimal value of the primal is lower bounded by the optimal value of the dual.

Theorem 17.5 (Weak duality). Consider the problem (17.3) and the associated Lagrangian dual
problem (17.4). Then the following statement holds.

min
x∈C

f(x) ≥ max
λ≥0

q(λ, µ)

where C = {x : gi(x) ≤ 0 for i = 1, . . . ,m, hj(x) = 0 for j = 1, . . . , `}.
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Proof. By proposition 17.4, we know that f(x) ≥ q(λ, µ) for any x ∈ C and λ ≥ 0. Then taking
the minimum of f(x) over x ∈ C, it follows that minx∈C f(x) ≥ q(λ, µ). Then taking the maximum
of q(λ, µ) over λ ≥ 0, we obtain the desired inequality.

Theorem 17.5 holds regardless of whether the objective and constraint functions are convex or not.
In fact, if we further assume that the objective f is convex and the constraint functions satisfy
Slater’s condition, then the inequality given in Theorem 17.5 holds with equality.

Theorem 17.6 (Strong duality). Consider the primal problem (17.3) and the associated Lagrangian
dual problem (17.4). Assume that the objective function f and the constraint functions g1, . . . , gm
are convex, and h1, . . . , h` are affine. If the primal problem (17.3) has a finite optimal value and
Slater’s condition, given in Definition 17.2, is satisfied, then there exist λ∗ ≥ 0 and µ∗ such that

min
x∈C

f(x) = q(λ∗, µ∗) = max
λ≥0

q(λ, µ)

where C = {x : gi(x) ≤ 0 for i = 1, . . . ,m, hj(x) = 0 for j = 1, . . . , `}.

3.2 Examples

Consider the following linear program in standard form.

minimize c>x

subject to Ax = b,

x ≥ 0.

(17.5)

Then the Lagrangian dual function is given by

q(λ, µ) = inf
x
L(x, λ, µ)

= inf
x

{
c>x− λ>x+ µ>(Ax− b)

}
= −b>µ+ inf

x

{
(c− λ+A>µ)>x

}
.

Note that infx
{

(c− λ+A>µ)>x
}

= −∞ unless c − λ + A>µ = 0. Hence, to maximize the
Lagrangian dual function q(λ, µ), it is sufficient to consider (λ, µ) satisfying c − λ + A>µ = 0.
Therefore, the associated Lagrangian dual problem is equivalent to

maximize − b>µ
subject to c− λ+A>µ = 0,

λ ≥ 0.

(17.6)

In fact, we can eliminate the variable from the constraints c+A>µ ≥ λ and λ ≥ 0, and they can be
equivalently written as c+A>µ ≥ 0. Moreover, the variables µ are unrestricted, so we can replace
µ by −µ. Then (17.6) is equivalent to

maximize b>µ

subject to A>µ ≤ c,
(17.7)

which is the dual linear program for (17.5).
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Next we consider the following quadratic program.

minimize
1

2
x>Qx+ p>x

subject to Ax = b
(17.8)

where Q is positive definite and thus is invertible. The corresponding Lagrangian function is given
by

L(x, µ) =
1

2
x>Qx+ p>x+ µ>(Ax− b)

= −b>µ+

(
1

2
x>Qx+ (p+A>µ)>x

)
.

Then
∇xL(x, µ) = Qx+ (p+A>µ),

and therefore, ∇xL(x, µ) = 0 if and only if x = −Q−1(p + A>µ). This in turn implies that the
Lagrangian dual function is given by

q(µ) = inf
x
L(x, µ)

= L
(
−Q−1(p+A>µ), µ

)
= −b>µ− 1

2
(p+A>µ)>Q−1(p+A>µ)

= −1

2
µ>AQ−1A>µ− (b+AQ−1p)>µ− 1

2
p>p.

Hence, the Lagrangian dual problem is

max
µ

{
−1

2
µ>AQ−1A>µ− (b+AQ−1p)>µ

}
.

3.3 Lagrangian dual for conic programming

Consider the following conic programming problem

minimize f(x)

subject to gi(x) ≤Ki 0 for i = 1, . . . ,m

hj(x) = 0 for j = 1, . . . , `

(17.9)

where K1, . . . ,Km are proper cones. Remember that gi(x) ≤Ki 0 means −gi(x) ∈ Ki. Moreover,
recall that the dual cone of a cone K is given by

K∗ = {y : y>x ≥ 0 ∀x ∈ K}.

As we picked a nonnegative multiplier λ ≥ 0 to define the Lagrangian function, we pick a multiplier
λ from the dual cone K∗. The Lagrangian function of (17.9) is given by

L(x, λ, µ) = f(x) +

m∑
i=1

λ>i gi(x) +
∑̀
j=1

µjhj(x)
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where λi ∈ K∗i is now a vector from the dual cone of Ki for each i. Then the Lagrangian dual
function is similarly defined as q(λ, µ) = infx L(x, λ, µ). The Lagrangian dual problem is given by

maximize q(λ, µ)

subject to λi ≥K∗
i

0 for i = 1, . . . ,m.
(17.10)

As an example, we consider the following semidefinite program.

minimize c>x

subject to
d∑
i=1

xiAi ≥Sm
+
B

(17.11)

where Sm+ denotes the PSD cone containing all m ×m PSD matrices. We learned that the PSD
cone is self-dual, so the dual of Sm+ is itself. Let Y ∈ Sm+ , and consider the associated Lagrangian
dual function.

q(Y ) = inf
x
L(x, Y ) = inf

x

{
c>x−

d∑
i=1

xitr(Y
>Ai) + tr(Y >B)

}
.

Note that the Lagrangian dual function q(Y ) has a finite value if and only if ci = tr(Y >Ai) for
every i ∈ [d]. Then the Lagrangian dual problem is given by

maximize tr(Y >B)

subject to tr(Y >Ai) = ci for i = 1, . . . , d.

Y ∈ Sm+

(17.12)
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