1 Outline

In this lecture, we study

- convergence of proximal gradient descent.
- ISTA and FISTA for LASSO.
- Proximal point algorithm.

2 Convergence of proximal gradient descent

We consider the following composite convex optimization problem.

$$
\min _{x \in \mathbb{R}^{d}} f(x)=g(x)+h(x)
$$

where we assume that g is a smooth convex function and h is convex. For constrained minimixation, we take $h(x)=I_{C}(x)$ where C is the convex domain. Then the associated prox operator is equivalent to the projection operator. For LASSO, we take $h(\beta)=\lambda\|\beta\|_{1}$ whose associated prox operator is given by

$$
\operatorname{prox}_{\eta \lambda\|\cdot\|_{1}}(\beta)=(\underbrace{\max \left\{0,\left|\beta_{i}\right|-\eta \lambda\right\}}_{\text {shirinkage operator }} \cdot \operatorname{sign}\left(\beta_{i}\right))_{i \in[d]}
$$

The proximal gradient algorithm applies to this composite problem proceeds with the following update rule.

$$
x_{t+1}=\operatorname{prox}_{\eta h}\left(x_{t}-\eta \nabla g\left(x_{t}\right)\right) .
$$

```
Algorithm 1 Proximal gradient descent
    Initialize \(x_{1} \in C\).
    for \(t=1, \ldots, T\) do
        Update \(x_{t+1}=\operatorname{prox}_{\eta h}\left(x_{t}-(1 / \beta) \nabla g\left(x_{t}\right)\right)\) where \(\beta\) is the smoothness parameter of \(g\).
    end for
    Return \(x_{T+1}\).
```

The gradient mapping is defined as

$$
G_{\eta}(x)=\frac{1}{\eta}\left(x-\operatorname{prox}_{\eta h}(x-\eta \nabla g(x))\right) .
$$

Here, $-\eta G_{\eta}(x)$ is equal to $\operatorname{prox}_{\eta h}(x-\eta \nabla g(x))-x$, which is the difference between the current point x and the one obtained after the proximal gradient update applied to x. Then

$$
x_{t+1}=x_{t}-\eta G_{\eta}\left(x_{t}\right) .
$$

Note that when h is the indicator function of \mathbb{R}^{d}, the gradient mapping is simply $\nabla g(x)$. Hence, the gradient mapping operator is similar in spirit to the gradient operator. In fact, we can derive the following optimality condition in terms of the gradient mapping.

Lemma 16.1. $G_{\eta}(\hat{x})=0$ if and only if $\hat{x} \in \operatorname{argmin}_{x \in \mathbb{R}^{d}} g(x)+h(x)$.
Proof. By the optimality condition, \hat{x} minimizes $g+h$ if and only if

$$
\begin{aligned}
0 \in\{\nabla g(\hat{x})\}+\partial h(\hat{x}) & \leftrightarrow-\nabla g(\hat{x}) \in \partial h(\hat{x}) \\
& \leftrightarrow(\hat{x}-\eta \nabla g(\hat{x}))-\hat{x} \in \eta \partial h(\hat{x}) \\
& \leftrightarrow \hat{x}=\operatorname{prox}_{\eta h}(\hat{x}-\eta \nabla g(\hat{x}))
\end{aligned}
$$

Note that $\hat{x}=\operatorname{prox}_{\eta h}(\hat{x}-\eta \nabla g(\hat{x}))$ is equivalent to

$$
G_{\eta}(\hat{x})=\frac{1}{\eta}\left(\hat{x}-\operatorname{prox}_{\eta h}(\hat{x}-\eta \nabla g(\hat{x}))\right)=0
$$

Therefore, \hat{x} is a minimizer of $g+h$ if and only if $G_{\eta}(\hat{x})=0$.
To analyze the convergence of proximal gradient descent, we need the following lemma.
Lemma 16.2. Consider $f=g+h$ where g is β-smooth and α-strongly convex in the ℓ_{2} norm and h is convex. Assume that $\beta>0$ and $\alpha \geq 0$. Then for any x, z,

$$
f\left(x-\frac{1}{\beta} G_{1 / \beta}(x)\right) \leq f(z)+G_{1 / \beta}(x)^{\top}(x-z)-\frac{1}{2 \beta}\left\|G_{1 / \beta}(x)\right\|_{2}^{2}-\frac{\alpha}{2}\|x-z\|_{2}^{2}
$$

Proof. As $f=g+h$, we upper bound g and h separately, thereby bounding f. Note that

$$
\begin{align*}
g\left(x-\frac{1}{\beta} G_{1 / \beta}(x)\right) & \leq g(x)+\nabla g(x)^{\top}\left(\left(x-\frac{1}{\beta} G_{1 / \beta}(x)\right)-x\right)+\frac{\beta}{2}\left\|\left(x-\frac{1}{\beta} G_{1 / \beta}(x)\right)-x\right\|_{2}^{2} \\
& =g(x)-\frac{1}{\beta} \nabla g(x)^{\top} G_{1 / \beta}(x)+\frac{1}{2 \beta}\left\|G_{1 / \beta}(x)\right\|_{2}^{2} \\
& \leq g(z)-\nabla g(x)^{\top}(z-x)-\frac{\alpha}{2}\|z-x\|_{2}^{2}-\frac{1}{\beta} \nabla g(x)^{\top} G_{1 / \beta}(x)+\frac{1}{2 \beta}\left\|G_{1 / \beta}(x)\right\|_{2}^{2} \tag{16.1}
\end{align*}
$$

where the first inequality is due to the β-smoothness of g and the second inequality is due to the α-strong convexity of g.
Next we consider the h part. Note that

$$
u=\operatorname{prox}_{(1 / \beta) h}(x-(1 / \beta) \nabla g(x))=x-\frac{1}{\beta} G_{1 / \beta}(x)
$$

if and only if

$$
\left(x-\frac{1}{\beta} \nabla g(x)\right)-\left(x-\frac{1}{\beta} G_{1 / \beta}(x)\right) \in \frac{1}{\beta} \partial h\left(x-\frac{1}{\beta} G_{1 / \beta}(x)\right) .
$$

Multiplying each side by β, it is equivalent to

$$
G_{1 / \beta}(x)-\nabla g(x) \in \partial h\left(x-\frac{1}{\beta} G_{1 / \beta}(x)\right) .
$$

Then it follows from the convexity of h that

$$
\begin{equation*}
h\left(x-\frac{1}{\beta} G_{1 / \beta}(x)\right) \leq h(z)-\left(G_{1 / \beta}(x)-\nabla g(x)\right)^{\top}\left(z-\left(x-\frac{1}{\beta} G_{1 / \beta}(x)\right)\right) \tag{16.2}
\end{equation*}
$$

Combining (16.1) and (16.2), we get

$$
f\left(x-\frac{1}{\beta} G_{1 / \beta}(x)\right) \leq f(z)-G_{1 / \beta}(x)^{\top}(z-x)-\frac{1}{2 \beta}\left\|G_{1 / \beta}(x)\right\|_{2}^{2}-\frac{\alpha}{2}\|x-z\|_{2}^{2}
$$

as required.
One would find that Lemma 16.2 is analogous to the lemma stating that the gradient descent with step size $1 / \beta$ always improves for a β-smooth function. In fact, plugging in $z=x$, we obtain

$$
\begin{equation*}
f\left(x-\frac{1}{\beta} G_{1 / \beta}(x)\right) \leq f(x)-\frac{1}{2 \beta}\left\|G_{1 / \beta}(x)\right\|_{2}^{2} \tag{16.3}
\end{equation*}
$$

The next step we took for smooth functions was to use $f(x) \leq f\left(x^{*}\right)-\nabla f(x)^{\top}\left(x^{*}-x\right)$. However, as $\nabla f(x) \neq G_{1 / \beta}(x)$, we cannot directly use (16.3). Instead, we start from Lemma 16.2 by plugging in $z=x^{*}$ and $x=x_{t}$. Then

$$
\begin{aligned}
f\left(x_{t+1}\right) & \leq f\left(x^{*}\right)+G_{1 / \beta}(x)^{\top}\left(x_{t}-x^{*}\right)-\frac{1}{2 \beta}\left\|G_{1 / \beta}\left(x_{t}\right)\right\|_{2}^{2}-\frac{\alpha}{2}\left\|x_{t}-x^{*}\right\|_{2}^{2} \\
& =f\left(x^{*}\right)+\frac{\beta}{2}\left(\left\|x_{t}-x^{*}\right\|_{2}^{2}-\left\|x_{t}-x^{*}-\frac{1}{\beta} G_{1 / \beta}\left(x_{t}\right)\right\|_{2}^{2}\right)-\frac{\alpha}{2}\left\|x_{t}-x^{*}\right\|_{2}^{2} \\
& =f\left(x^{*}\right)+\frac{\beta}{2}\left(\left\|x_{t}-x^{*}\right\|_{2}^{2}-\left\|x_{t+1}-x^{*}\right\|_{2}^{2}\right)-\frac{\alpha}{2}\left\|x_{t}-x^{*}\right\|_{2}^{2}
\end{aligned}
$$

This implies that

$$
\begin{equation*}
f\left(x_{t+1}\right)-f\left(x^{*}\right) \leq \frac{\beta}{2}\left(\left\|x_{t}-x^{*}\right\|_{2}^{2}-\left\|x_{t+1}-x^{*}\right\|_{2}^{2}\right)-\frac{\alpha}{2}\left\|x_{t}-x^{*}\right\|_{2}^{2} \tag{16.4}
\end{equation*}
$$

Theorem 16.3. Let $f=g+h$ where g is a β-smooth convex function in the ℓ_{2} norm and h is convex. Then x_{T+1} returned by Proximal Gradient Descent (Algorithm 1) satisfies

$$
f\left(x_{T+1}\right)-f\left(x^{*}\right) \leq \frac{\beta\left\|x_{1}-x^{*}\right\|_{2}^{2}}{2}
$$

Proof. First, sum up (16.4) for $t=1, \ldots, T$ and then divide each side by T. Then we obtain

$$
\frac{1}{T} \sum_{t=1}^{T} f\left(x_{t+1}\right)-f\left(x^{*}\right) \leq \frac{\beta}{2}\left(\left\|x_{1}-x^{*}\right\|_{2}^{2}-\left\|x_{T+1}-x^{*}\right\|_{2}^{2}\right)-\frac{\alpha}{2} \sum_{t=1}^{T}\left\|x_{t}-x^{*}\right\|_{2}^{2}
$$

By (16.3), we know that $f\left(x_{T+1}\right) \leq f\left(x_{T}\right) \leq \cdots \leq f\left(x_{2}\right)$. Moreover, $\left\|x_{t}-x^{*}\right\|_{2} \geq 0$. Thus the left-hand side is greater than or equal to $f\left(x_{T+1}\right)-f\left(x^{*}\right)$ and the right-hand side is at most $(\beta / 2)\left\|x_{1}-x^{*}\right\|_{2}^{2}$.

Furthermore, when α is strictly positive, in which case, g is strongly convex, we deduce the following convergence result.

Theorem 16.4. Let $f=g+h$ where g is β-smooth and α-strongly convex in the ℓ_{2} norm and h is convex. Then x_{T+1} returned by Proximal Gradient Descent (Algorithm 1) satisfies

$$
\left\|x_{T+1}-x^{*}\right\|_{2}^{2} \leq\left(1-\frac{\alpha}{\beta}\right)^{T}\left\|x_{1}-x^{*}\right\|_{2}^{2}
$$

Proof. Note that the left-hand side of (16.4) is greater than or equal to 0 , and so is the right-hand side. Then it follows that

$$
\left\|x_{t+1}-x^{*}\right\|_{2}^{2} \leq\left(1-\frac{\alpha}{\beta}\right)\left\|x_{t}-x^{*}\right\|_{2}^{2}
$$

as required.

3 ISTA and FISTA for LASSO

In the last section, we discussed proximal gradient descent and its convergence. Next we apply proximal gradient descent to solve LASSO. We consider

$$
\min _{\beta} \quad f(\beta)=g(\beta)+h(\beta)
$$

where

$$
g(\beta)=\frac{1}{n}\|y-X \beta\|_{2}^{2} \quad \text { and } \quad h(\beta)=\lambda\|\beta\|_{1}
$$

Iterative Shrinkage-Thresholding Algorithm (ISTA) is basically proximal gradient descent applied to LASSO. The first part g is smooth with smoothness parameter

$$
\frac{1}{\eta}=\frac{2}{n}\|X\|_{2}
$$

We observed that

$$
\operatorname{prox}_{\eta \lambda\|\cdot\|_{1}}(x)=\left(\max \left\{0,\left|x_{i}\right|-\eta \lambda\right\} \cdot \operatorname{sign}\left(x_{i}\right)\right)_{i \in[d]}
$$

Basically, if any component x_{i} is greater than $\eta \lambda$ or less than $-\eta \lambda$, we shrink $\left|x_{i}\right|$ to $\eta \lambda$ where

$$
\eta \lambda=\frac{n \lambda}{2\|X\|_{2}}
$$

FISTA stands for Fast ISTA, that is an accelerated version of ISTA.
ISTA requires $O(1 / \epsilon)$ iterations, while FISTA needs $O(1 / \sqrt{\epsilon})$ iterations to converge to an ϵ approximate solution.

4 Proximal point algorithm

Remember that the proximal gradient method works for the following composite minimization problem.

$$
\operatorname{minimize} \quad f(x)=g(x)+h(x)
$$

The proximal gradient method proceeds with the update rule

$$
x_{t+1}=\operatorname{prox}_{\eta h}\left(x_{t}-\eta \nabla g(x)\right)
$$

In this section, we discuss the proximal point method, which is a special case of proximal gradient, and its application to the dual problem. Note that minimizing a closed convex function f can be written as a (trivial) composite minimization as follows.

$$
\operatorname{minimize} \quad f(x)=0+f(x)
$$

Here, the first part is $g=0$, which is trivially smooth, and the second part is $h=f$. Then the corresponding proximal gradient update is given by

$$
x_{t+1}=\operatorname{prox}_{\eta f}\left(x_{t}\right) .
$$

The algorithm with this update rule is referred to as the proximal point method. As $g=0$ is smooth, the proximal point algorithm converges with a rate of $O(1 / T)$.

```
Algorithm 2 Proximal point algorithm
    Initialize \(x_{1}\).
    for \(t=1, \ldots, T\) do
        Update \(x_{t+1}=\operatorname{prox}_{\eta f}\left(x_{t}\right)\).
    end for
    Return \(x_{T+1}\).
```

Theoretically, we can use any function h_{t} to run the proximal point algorithm, even if the objective is not h_{t}, in which case, the update rule corresponds to

$$
x_{t+1}=\operatorname{prox}_{\eta h_{t}}\left(x_{t}\right) .
$$

Hence, at each time step t, we may use a different function h_{t} hypothetically. Let us consider the first-order approximation of the objective function f at $x=x_{t}$.

$$
h_{t}(x)=f\left(x_{t}\right)+\nabla f\left(x_{t}\right)^{\top}\left(x-x_{t}\right) .
$$

We know that $f(x) \geq h_{t}(x)$ for all x by convexity. Then what is the proximal point update with h_{t} ? Note that

$$
\begin{aligned}
\operatorname{prox}_{\eta h_{t}}\left(x_{t}\right) & =\underset{u}{\operatorname{argmin}}\left\{f\left(x_{t}\right)+\nabla f\left(x_{t}\right)^{\top}\left(u-x_{t}\right)+\frac{1}{2 \eta}\left\|u-x_{t}\right\|_{2}^{2}\right\} \\
& =x_{t}-\eta \nabla f\left(x_{t}\right) .
\end{aligned}
$$

Therefore, the proximal point algorithm with the first-order approximation of f is precisely gradient descent. Hence, one can interpret gradient descent as an instance of the proximal point algorithm.
Let us now compare the proximal point algorithm with the objective f and gradient descent.
Lemma 16.5. $\operatorname{prox}_{\eta f}(x)=(I+\eta \partial f)^{-1}(x)$.
Proof. Let $u=\operatorname{prox}_{\eta f}(x)$. Remember that $u=\operatorname{prox}_{\eta f}(x)$ if and only if $x-u \in \eta \partial f(u)$. Note that $x-u \in \eta \partial f(u)$ is equvialent to $x \in(I+\eta \partial f)(u)$, which is equivalent to $u \in(I+\eta \partial f)^{-1}(x)$. In summary,

$$
u=\operatorname{prox}_{\eta f}(x) \quad \leftrightarrow \quad u \in(I+\eta \partial f)^{-1}(x) .
$$

Since u is unique, it follows that $u=(I+\eta \partial f)^{-1}(x)$.
By this lemma, the proximal point update rule can be written as

$$
x_{t+1}=\operatorname{prox}_{\eta f}\left(x_{t}\right)=(I+\eta \partial f)^{-1}\left(x_{t}\right) .
$$

This is equivalent to $x_{t}=(I+\eta \partial f)\left(x_{t+1}\right)=x_{t+1}+\eta \nabla f\left(x_{t+1}\right)$, which is

$$
x_{t+1}=x_{t}-\eta \nabla f\left(x_{t+1}\right) .
$$

In contrast to gradient descent that proceeds with $x_{t+1}=x_{t}-\eta \nabla f\left(x_{t}\right)$, we use the gradient at x_{t+1}.

