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1 Outline

In this lecture, we study

e convergence of proximal gradient descent.
e ISTA and FISTA for LASSO.

e Proximal point algorithm.

2 Convergence of proximal gradient descent

We consider the following composite convex optimization problem.

min  f(z) = g(z) + h(z)

where we assume that g is a smooth convex function and h is convex. For constrained minimixation,
we take h(z) = Ic(z) where C is the convex domain. Then the associated prox operator is equivalent
to the projection operator. For LASSO, we take h(3) = A||3||1 whose associated prox operator is
given by

prox, ., (8) = | max {0, [Bi| — nA} -sign(5:)

shirinkage operator i€ld]

The proximal gradient algorithm applies to this composite problem proceeds with the following
update rule.
Tip1 = proxyy, (z — nVg(xy)).

Algorithm 1 Proximal gradient descent

Initialize 1 € C.
fort=1,...,7 do
Update w441 = prox,, (v — (1/8)Vg(zt)) where 3 is the smoothness parameter of g.
end for
Return x4 1.

The gradient mapping is defined as
1
Gyla) = (z — prox,, (z — nVg(z))) .

Here, —nGy(z) is equal to prox,,(r — nVg(x)) — z, which is the difference between the current
point x and the one obtained after the proximal gradient update applied to . Then

Ti+1 = Tt — 77G77(5Ut)-
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Note that when h is the indicator function of R?, the gradient mapping is simply Vg(z). Hence,
the gradient mapping operator is similar in spirit to the gradient operator. In fact, we can derive
the following optimality condition in terms of the gradient mapping.

Lemma 16.1. G, (&) = 0 if and only if & € argmin,cga g(x) + h(z).
Proof. By the optimality condition, £ minimizes g + h if and only if

0€{Vg(2)}+0nE) <+ —Vg(&) e oh(z)
< (2-nVg(2)) — 2 € noh(Z)
© &= prox,, (¢ —nVg(2))

Note that & = prox,;,(Z —nVg(Z)) is equivalent to

N P . N
Go(#) = (& = proxy ( —nVg(2)) = 0
Therefore, & is a minimizer of g + h if and only if G,,(&) = 0. O

To analyze the convergence of proximal gradient descent, we need the following lemma.

Lemma 16.2. Consider f = g+ h where g is B-smooth and a-strongly convez in the fo norm and
h is convexr. Assume that § >0 and o > 0. Then for any z, z,

1 1 o
(o= 56usl)) < 1)+ Gus@) 0= 2) = 3Gy - gl = =13
Proof. As f = g+ h, we upper bound g and h separately, thereby bounding f. Note that

2

g <x _ ;GW(@> < g(z) + Vo(z)T <<x _ ;c;l/ﬂ(x)> _ x) + g H <:1: _ éc;l/ﬁ(x)> s

1 1
=g(z) — BVg(:c)TGl/g(:L“) +35 1G5,

< 9(2) = Val@) (= = 2) = iz = all} = 5 V9(2)" G1yale) + 5 [ Guslo)];
(16.1)
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where the first inequality is due to the S-smoothness of g and the second inequality is due to the
a-strong convexity of g.

Next we consider the h part. Note that
1

BGl/ﬁ(x)

u = prox gz — (1/8)Vg(z)) = = —

if and only if

(az - ;Vg(x)) - (x - ;Gl/ﬁ(x)> c ;ah <93 - ;ng(x)> .

Multiplying each side by f, it is equivalent to

Gyp(x) — Vg(z) € Oh (x — ;Gl/ﬁ(aj)> :
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Then it follows from the convexity of A that

Bz = 2G1s@)) < hiz) - (Gusle) — Vo) (2= (2 - 2G5 ). (16.2)
) (- (-

Combining (16.1) and (16.2), we get

B

as required. O

/ ( - 1Gw<x>) < £() = Guyo(@) "~ 2) = oGy (@ - e — 213

One would find that Lemma 16.2 is analogous to the lemma stating that the gradient descent with
step size 1/ always improves for a f-smooth function. In fact, plugging in z = z, we obtain

1 1 )
f (x - Bauﬁ@)) < f(a) — 551Grya(a) B (16.3)

The next step we took for smooth functions was to use f(z) < f(z*) — Vf(z) " (z* — z). However,
as Vf(r) # Gy/3(x), we cannot directly use (16.3). Instead, we start from Lemma 16.2 by plugging
inz=2z"and z = z;. Then

1
flaesn) < S + Guyp(@) (@ = a") = 551G (0B = Gl — 2713

N 1 2 o N
zp — ¥ — BGH/B(%) 2) — gl —z 3

/6 2 «
= f(@*) + 5 (o = 2713 = lzs = ") = Slloe - 713:

= fat)+ 5 (th Nl

This implies that

* B * *12 o *
Flaee) = £@) < 5 (oo =218 = e = 2*13) = Sllee — 2 1B, (16.9)
Theorem 16.3. Let f = g + h where g is a B-smooth convex function in the €5 norm and h is
convex. Then xpiq returned by Proximal Gradient Descent (Algorithm 1) satisfies

< Bz — 33*||%_

flara) - f7) < S
Proof. First, sum up (16.4) for t = 1,...,T and then divide each side by 7. Then we obtain

T T
1 * 5 * * (12 « *
23 Faen) = 1@ < 2 (a2 13— s —2*12) = 3 3 - a7 B
t=1 t=1

By (16.3), we know that f(z741) < f(zr) < --- < f(x2). Moreover, ||x; — x*[]2 > 0. Thus
the left-hand side is greater than or equal to f(z74+1) — f(2*) and the right-hand side is at most
(B/2)l|z1 — =*13. -

Furthermore, when « is strictly positive, in which case, g is strongly convex, we deduce the following
convergence result.



Theorem 16.4. Let f = g+ h where g is S-smooth and a-strongly convex in the {3 norm and h
is convex. Then xpyq returned by Proximal Gradient Descent (Algorithm 1) satisfies

T
(0%
lerss — o3 < (1 - ﬂ) a1 - &*[2

Proof. Note that the left-hand side of (16.4) is greater than or equal to 0, and so is the right-hand
side. Then it follows that

«
leess — 12 < (1 - ) e — 22,

g

as required. ]

3 ISTA and FISTA for LASSO

In the last section, we discussed proximal gradient descent and its convergence. Next we apply
proximal gradient descent to solve LASSO. We consider

min £(5) = 9(8) + h(9)

where

9(8) = lly— XI5 and h(8) = N5

Iterative Shrinkage-Thresholding Algorithm (ISTA) is basically proximal gradient descent applied
to LASSO. The first part g is smooth with smoothness parameter

~ = Z|IXl.
We observed that
prox, .|, (#) = (max{0, [x;| — nA} - sign(z;))sc(qy-
Basically, if any component x; is greater than n\ or less than —n\, we shrink |z;| to n\ where
. nA
22Xl
FISTA stands for Fast ISTA, that is an accelerated version of ISTA.

ISTA requires O(1/e) iterations, while FISTA needs O(1/\/€) iterations to converge to an e-
approximate solution.

nA

4 Proximal point algorithm

Remember that the proximal gradient method works for the following composite minimization
problem.
minimize f(z) = g(z) + h(z).
The proximal gradient method proceeds with the update rule
L1 = proxyy,(z: — nVg(x)).

In this section, we discuss the proximal point method, which is a special case of proximal gradient,
and its application to the dual problem. Note that minimizing a closed convex function f can be
written as a (trivial) composite minimization as follows.

minimize f(z) =0+ f(z).
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Here, the first part is g = 0, which is trivially smooth, and the second part is h = f. Then the
corresponding proximal gradient update is given by

Tir1 = Prox, ¢(z¢).

The algorithm with this update rule is referred to as the proximal point method. As g = 0 is
smooth, the proximal point algorithm converges with a rate of O(1/T).

Algorithm 2 Proximal point algorithm

Initialize ;.
fort=1,...,7 do
Update z441 = proxnf(xt).
end for
Return zp1.

Theoretically, we can use any function h; to run the proximal point algorithm, even if the objective
is not h, in which case, the update rule corresponds to

Tt+1 = Prox,y, (¢).

Hence, at each time step ¢, we may use a different function h; hypothetically. Let us consider the
first-order approximation of the objective function f at x = xy.

he(z) = f(xe) + V() (x — z).

We know that f(z) > h(z) for all by convexity. Then what is the proximal point update with
h;? Note that

prosy, (o) = axguin { 1(20) + V1) (= 2) + o Ju = il

=z — nV f(z1).

Therefore, the proximal point algorithm with the first-order approximation of f is precisely gradient
descent. Hence, one can interpret gradient descent as an instance of the proximal point algorithm.

Let us now compare the proximal point algorithm with the objective f and gradient descent.
Lemma 16.5. prox, (z) = (I +7df) " (x).

Proof. Let u = prox, ¢(x). Remember that u = prox, ;(z) if and only if x —u € ndf(u). Note that
r —u € ndf(u) is equvialent to z € (I + ndf)(u), which is equivalent to u € (I +ndf)"(z). In
summary,

u=prox,¢(z) <« we(l+ nof)(x).

Since u is unique, it follows that u = (I +ndf)~!(z). O
By this lemma, the proximal point update rule can be written as
Tyy1 = prox, ¢(z) = (I + nof) ().
This is equivalent to x; = (I + ndf)(z¢+1) = xe41 +nV f(x441), which is
Tep1 = 20 — NV f(T41).

In contrast to gradient descent that proceeds with zy11 = xy — nV f(x¢), we use the gradient at
Ti41-
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