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1 Outline

In this lecture, we study

• convergence of proximal gradient descent.

• ISTA and FISTA for LASSO.

• Proximal point algorithm.

2 Convergence of proximal gradient descent

We consider the following composite convex optimization problem.

min
x∈Rd

f(x) = g(x) + h(x)

where we assume that g is a smooth convex function and h is convex. For constrained minimixation,
we take h(x) = IC(x) where C is the convex domain. Then the associated prox operator is equivalent
to the projection operator. For LASSO, we take h(β) = λ∥β∥1 whose associated prox operator is
given by

proxηλ∥·∥1(β) =

max {0, |βi| − ηλ}︸ ︷︷ ︸
shirinkage operator

·sign(βi)


i∈[d]

The proximal gradient algorithm applies to this composite problem proceeds with the following
update rule.

xt+1 = proxηh(xt − η∇g(xt)).

Algorithm 1 Proximal gradient descent

Initialize x1 ∈ C.
for t = 1, . . . , T do

Update xt+1 = proxηh(xt − (1/β)∇g(xt)) where β is the smoothness parameter of g.
end for
Return xT+1.

The gradient mapping is defined as

Gη(x) =
1

η

(
x− proxηh(x− η∇g(x))

)
.

Here, −ηGη(x) is equal to proxηh(x − η∇g(x)) − x, which is the difference between the current
point x and the one obtained after the proximal gradient update applied to x. Then

xt+1 = xt − ηGη(xt).

1



Note that when h is the indicator function of Rd, the gradient mapping is simply ∇g(x). Hence,
the gradient mapping operator is similar in spirit to the gradient operator. In fact, we can derive
the following optimality condition in terms of the gradient mapping.

Lemma 16.1. Gη(x̂) = 0 if and only if x̂ ∈ argminx∈Rd g(x) + h(x).

Proof. By the optimality condition, x̂ minimizes g + h if and only if

0 ∈ {∇g(x̂)}+ ∂h(x̂) ↔ −∇g(x̂) ∈ ∂h(x̂)

↔ (x̂− η∇g(x̂))− x̂ ∈ η∂h(x̂)

↔ x̂ = proxηh(x̂− η∇g(x̂))

Note that x̂ = proxηh(x̂− η∇g(x̂)) is equivalent to

Gη(x̂) =
1

η

(
x̂− proxηh(x̂− η∇g(x̂))

)
= 0

Therefore, x̂ is a minimizer of g + h if and only if Gη(x̂) = 0.

To analyze the convergence of proximal gradient descent, we need the following lemma.

Lemma 16.2. Consider f = g+ h where g is β-smooth and α-strongly convex in the ℓ2 norm and
h is convex. Assume that β > 0 and α ≥ 0. Then for any x, z,

f

(
x− 1

β
G1/β(x)

)
≤ f(z) +G1/β(x)

⊤(x− z)− 1

2β
∥G1/β(x)∥22 −

α

2
∥x− z∥22.

Proof. As f = g + h, we upper bound g and h separately, thereby bounding f . Note that

g

(
x− 1

β
G1/β(x)

)
≤ g(x) +∇g(x)⊤

((
x− 1

β
G1/β(x)

)
− x

)
+

β

2

∥∥∥∥(x− 1

β
G1/β(x)

)
− x

∥∥∥∥2
2

= g(x)− 1

β
∇g(x)⊤G1/β(x) +

1

2β

∥∥G1/β(x)
∥∥2
2

≤ g(z)−∇g(x)⊤(z − x)− α

2
∥z − x∥22 −

1

β
∇g(x)⊤G1/β(x) +

1

2β

∥∥G1/β(x)
∥∥2
2

(16.1)

where the first inequality is due to the β-smoothness of g and the second inequality is due to the
α-strong convexity of g.

Next we consider the h part. Note that

u = prox(1/β)h(x− (1/β)∇g(x)) = x− 1

β
G1/β(x)

if and only if (
x− 1

β
∇g(x)

)
−
(
x− 1

β
G1/β(x)

)
∈ 1

β
∂h

(
x− 1

β
G1/β(x)

)
.

Multiplying each side by β, it is equivalent to

G1/β(x)−∇g(x) ∈ ∂h

(
x− 1

β
G1/β(x)

)
.
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Then it follows from the convexity of h that

h

(
x− 1

β
G1/β(x)

)
≤ h(z)−

(
G1/β(x)−∇g(x)

)⊤(
z −

(
x− 1

β
G1/β(x)

))
. (16.2)

Combining (16.1) and (16.2), we get

f

(
x− 1

β
G1/β(x)

)
≤ f(z)−G1/β(x)

⊤(z − x)− 1

2β
∥G1/β(x)∥22 −

α

2
∥x− z∥22,

as required.

One would find that Lemma 16.2 is analogous to the lemma stating that the gradient descent with
step size 1/β always improves for a β-smooth function. In fact, plugging in z = x, we obtain

f

(
x− 1

β
G1/β(x)

)
≤ f(x)− 1

2β
∥G1/β(x)∥22. (16.3)

The next step we took for smooth functions was to use f(x) ≤ f(x∗)−∇f(x)⊤(x∗ − x). However,
as ∇f(x) ̸= G1/β(x), we cannot directly use (16.3). Instead, we start from Lemma 16.2 by plugging
in z = x∗ and x = xt. Then

f(xt+1) ≤ f(x∗) +G1/β(x)
⊤(xt − x∗)− 1

2β
∥G1/β(xt)∥22 −

α

2
∥xt − x∗∥22

= f(x∗) +
β

2

(
∥xt − x∗∥22 −

∥∥∥∥xt − x∗ − 1

β
G1/β(xt)

∥∥∥∥2
2

)
− α

2
∥xt − x∗∥22

= f(x∗) +
β

2

(
∥xt − x∗∥22 − ∥xt+1 − x∗∥22

)
− α

2
∥xt − x∗∥22.

This implies that

f(xt+1)− f(x∗) ≤ β

2

(
∥xt − x∗∥22 − ∥xt+1 − x∗∥22

)
− α

2
∥xt − x∗∥22. (16.4)

Theorem 16.3. Let f = g + h where g is a β-smooth convex function in the ℓ2 norm and h is
convex. Then xT+1 returned by Proximal Gradient Descent (Algorithm 1) satisfies

f(xT+1)− f(x∗) ≤ β∥x1 − x∗∥22
2

.

Proof. First, sum up (16.4) for t = 1, . . . , T and then divide each side by T . Then we obtain

1

T

T∑
t=1

f(xt+1)− f(x∗) ≤ β

2

(
∥x1 − x∗∥22 − ∥xT+1 − x∗∥22

)
− α

2

T∑
t=1

∥xt − x∗∥22.

By (16.3), we know that f(xT+1) ≤ f(xT ) ≤ · · · ≤ f(x2). Moreover, ∥xt − x∗∥2 ≥ 0. Thus
the left-hand side is greater than or equal to f(xT+1) − f(x∗) and the right-hand side is at most
(β/2)∥x1 − x∗∥22.

Furthermore, when α is strictly positive, in which case, g is strongly convex, we deduce the following
convergence result.
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Theorem 16.4. Let f = g + h where g is β-smooth and α-strongly convex in the ℓ2 norm and h
is convex. Then xT+1 returned by Proximal Gradient Descent (Algorithm 1) satisfies

∥xT+1 − x∗∥22 ≤
(
1− α

β

)T

∥x1 − x∗∥22.

Proof. Note that the left-hand side of (16.4) is greater than or equal to 0, and so is the right-hand
side. Then it follows that

∥xt+1 − x∗∥22 ≤
(
1− α

β

)
∥xt − x∗∥22,

as required.

3 ISTA and FISTA for LASSO

In the last section, we discussed proximal gradient descent and its convergence. Next we apply
proximal gradient descent to solve LASSO. We consider

min
β

f(β) = g(β) + h(β)

where

g(β) =
1

n
∥y −Xβ∥22 and h(β) = λ∥β∥1.

Iterative Shrinkage-Thresholding Algorithm (ISTA) is basically proximal gradient descent applied
to LASSO. The first part g is smooth with smoothness parameter

1

η
=

2

n
∥X∥2.

We observed that
proxηλ∥·∥1(x) = (max{0, |xi| − ηλ} · sign(xi))i∈[d].

Basically, if any component xi is greater than ηλ or less than −ηλ, we shrink |xi| to ηλ where

ηλ =
nλ

2∥X∥2
.

FISTA stands for Fast ISTA, that is an accelerated version of ISTA.

ISTA requires O(1/ϵ) iterations, while FISTA needs O(1/
√
ϵ) iterations to converge to an ϵ-

approximate solution.

4 Proximal point algorithm

Remember that the proximal gradient method works for the following composite minimization
problem.

minimize f(x) = g(x) + h(x).

The proximal gradient method proceeds with the update rule

xt+1 = proxηh(xt − η∇g(x)).

In this section, we discuss the proximal point method, which is a special case of proximal gradient,
and its application to the dual problem. Note that minimizing a closed convex function f can be
written as a (trivial) composite minimization as follows.

minimize f(x) = 0 + f(x).
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Here, the first part is g = 0, which is trivially smooth, and the second part is h = f . Then the
corresponding proximal gradient update is given by

xt+1 = proxηf (xt).

The algorithm with this update rule is referred to as the proximal point method. As g = 0 is
smooth, the proximal point algorithm converges with a rate of O(1/T ).

Algorithm 2 Proximal point algorithm

Initialize x1.
for t = 1, . . . , T do

Update xt+1 = proxηf (xt).
end for
Return xT+1.

Theoretically, we can use any function ht to run the proximal point algorithm, even if the objective
is not ht, in which case, the update rule corresponds to

xt+1 = proxηht
(xt).

Hence, at each time step t, we may use a different function ht hypothetically. Let us consider the
first-order approximation of the objective function f at x = xt.

ht(x) = f(xt) +∇f(xt)
⊤(x− xt).

We know that f(x) ≥ ht(x) for all x by convexity. Then what is the proximal point update with
ht? Note that

proxηht
(xt) = argmin

u

{
f(xt) +∇f(xt)

⊤(u− xt) +
1

2η
∥u− xt∥22

}
= xt − η∇f(xt).

Therefore, the proximal point algorithm with the first-order approximation of f is precisely gradient
descent. Hence, one can interpret gradient descent as an instance of the proximal point algorithm.

Let us now compare the proximal point algorithm with the objective f and gradient descent.

Lemma 16.5. proxηf (x) = (I + η∂f)−1(x).

Proof. Let u = proxηf (x). Remember that u = proxηf (x) if and only if x− u ∈ η∂f(u). Note that
x − u ∈ η∂f(u) is equvialent to x ∈ (I + η∂f)(u), which is equivalent to u ∈ (I + η∂f)−1(x). In
summary,

u = proxηf (x) ↔ u ∈ (I + η∂f)−1(x).

Since u is unique, it follows that u = (I + η∂f)−1(x).

By this lemma, the proximal point update rule can be written as

xt+1 = proxηf (xt) = (I + η∂f)−1(xt).

This is equivalent to xt = (I + η∂f)(xt+1) = xt+1 + η∇f(xt+1), which is

xt+1 = xt − η∇f(xt+1).

In contrast to gradient descent that proceeds with xt+1 = xt − η∇f(xt), we use the gradient at
xt+1.
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