
IE 539: Convex Optimization KAIST, Fall 2023
Lecture #14: Online and stochastic gradient descent algorithms October 25, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

• the online convex optimization (OCO) framework,

• online gradient descent for OCO,

• connections between OCO and stochastic optimization (SO),

• stochastic gradient descent.

2 Online convex optimization

In the last lecture, we discussed online advertisement selection, email spam filter, and multi-armed
bandits. Remember that these problems involve a sequential decision-making that depends on
interactions between decisions made by the decision-maker and data provided by the environment.
As mentioned in the last lecture, this process is called online learning or online optimization in
the sense that the learning process and the optimization task proceed based on the history of
information accumulated so far. As opposed to online learning and online optimization, offline
learning and offline optimization assume that complete information is available.

In this section, we consider the extension of convex optimization to the online optimization setting.
Namely, online convex optimization (OCO) is an online learning problem, that is to make a squence
of predictions based on the history of past decisions and their results. The framework of OCO is
closely related to game theory, statistical learning theory, and stochastic modelling as well as convex
optimization.

The following gives the list of main components.

1. (A sequence of convex loss functions) We are given convex loss functions f1, . . . , fT where T
is the length of time horizon. The functions are revealed one at a time sequentially.

2. (Sequential decisions) At each time step t, we get to choose a decision/prediction xt before
the function ft for the time step is revealed. In other words, the function ft is unknown to
the decision maker when making a decision.

3. (Bounded domain) The set of available decisions (the feasible set), denoted C, is bounded
and convex.

Then we compute the accumulated losses incurred over the T time steps.

T∑
t=1

ft(xt).

1



This is indeed an online learning problem because, to make a new decision xt+1, we may use the
history of the past decisions and their corresponding losses

x1, f1(x1), x2, f2(x2), . . . , xt, ft(xt)

although the loss function ft+1 for time step t+ 1 is not yet given.

2.1 Performance metric: the notion of regret

Let A be an algoriothm for online convex optimization, and let xA1 , . . . , x
A
T denote the decisions

made by algorithm A. We have defined the cumulative loss, minimizing which is our goal basically.
At the same time, to measure how close algorithm A is to being optimal, we compare the cumulative
loss of algorithm A against the cumulative loss of the best fixed decision. To be more precise, we
consider the following notion of regret.

RegretT (A) =

T∑
t=1

ft(x
A
t )−min

x∈C

T∑
t=1

ft(x).

Here, setting the benchmark as a single best decision is motivated by email spam filter for which
we need to find the most effective spam filtering system and multi-armed bandits in which the goal
is to find the most profitable slot machine.

We focus on developing algorithms that minimize the regret. By taking a sequence of actions to
minimize the regret, we learn and get close to the action of the best decision maker.

Our goal is to design an algorithm A whose regret is sublinear in T , which means that RegretT (A) =
o(T ). What does this indicate? We look at the time averaged regret.

1

T

T∑
t=1

ft(x
A
t )−min

x∈C

1

T

T∑
t=1

ft(x) =
RegretT (A)

T
= o(1).

In particular, in the offine setting where f1 = · · · = fT = f , the statement is equivalent to

1

T

T∑
t=1

f(xAt )−min
x∈C

f(x) =
RegretT (A)

T
= o(1).

Hence, a sublinear regret means that the time averaged optimality gap goes to 0 as T increases.

2.2 Online (sub)gradient descent

There is a simple algorithm for online convex optimization that minimizes regret. In fact, a modi-
fication of gradient descent works for the online setting, and it is called online gradient descent.

Algorithm 1 Online gradient descent (OGD)

Initialize x1 ∈ C.
for t = 1, . . . , T do

Observe ft(xt) and obtain gt ∈ ∂ft(xt).
Obtain xt+1 = ProjC {xt − ηtgt} for a step size ηt > 0.

end for

The only distinction compared to the subgradient method for the offline setting is that we obtain
a subgradient from the subdifferentials ∂ft(xt) of functions ft that are sequentially revealed. This
simple algorithm does achieve an aymptotically optimal regret.

2



Theorem 14.1. Let f1, . . . , fT be an arbitrary sequence of convex loss functions satisfying ‖gt‖2 ≤
L for any gt ∈ ∂ft(x) for every x ∈ Rd and t ≥ 1. Then online gradient descent given by Algorithm 1
with step sizes ηt = R/(L

√
t) where R = supx,y∈C ‖x− y‖22 satisfies

T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x) ≤ 3

2
LR
√
T .

Proof. The analysis of online gradient descent is quite similar to that of gradient descent. Let
x∗ ∈ argminx∈C

∑T
t=1 ft(x). Note that

‖xt+1 − x∗‖22 ≤ ‖xt − ηtgt − x∗‖22
= ‖xt − x∗‖22 + η2t ‖gt‖22 − 2ηtg

>
t (xt − x∗)

≤ ‖xt − x∗‖22 + η2tL
2 − 2ηt(ft(xt)− ft(x∗))

where the first inequality is due to the contraction property of the projection operator and the
second inequality is due to the convexity of ft. Then it follows that

ft(xt)− ft(x∗) ≤
1

2ηt

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+
ηt
2
L2.

Adding up these inequalities for t = 1, . . . , T , we obtain

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗) ≤

T∑
t=1

1

2ηt

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+

T∑
t=1

ηt
2
L2

≤
T∑
t=1

‖xt − x∗‖22
(

1

2ηt
− 1

2ηt−1

)
+
L2

2

T∑
t=1

ηt

≤ R2

2

T∑
t=1

(
1

ηt
− 1

ηt−1

)
+
L2

2

T∑
t=1

ηt

=
R2

2
· 1

ηT
+
L2

2

T∑
t=1

R

L
√
t

≤ 3

2
RL
√
T

where we set 1/η0 to be 0, the second inequality is because ‖xt+1−x∗‖22 ≥ 0, and the last inequality
is because

∑T
t=1 1/

√
t ≤ 2

√
T .

Therefore, for Lipschitz continuous functions, OGD achieves the regret of O(
√
T ). Can we do better

than this?

Theorem 14.2. Any algorithm for online convex optimization incurs Ω(LR
√
T ) regret in the worst

case. The same statement holds even when the loss functions are i.i.d. with a fixed stationary
distribution.

For strongly convex and Lipschitz continuous functions, we can achieve a logarithmic regret!

Theorem 14.3. Let f1, . . . , fT be an arbitrary sequence of convex loss functions satisfying ‖gt‖2 ≤
L for any gt ∈ ∂ft(x) for every x ∈ Rd and t ≥ 1. Moreover, f1, . . . , fT are α-strongly convex
with respect to the `2 norm. Then online gradient descent given by Algorithm 1 with step sizes
ηt = 1/(αt) satisfies

T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x) ≤ L2

2α
(1 + log T ).

3



2.3 Stochastic vs adversarial

Where do f1, . . . , fT come from?

• (Stochastic i.i.d.) There is a distribution of functions, and at each time step, a function is sam-
pled from the distribution independently from the history. Here, f1, . . . , fT are independent
and identically distributed (i.i.d.).

• (Markov chain) f1, . . . , fT are sampled from a Markov chain.

• (General stochastic process) f1, . . . , fT form a general stochastic process.

• (Adaptive adversary) There is an adaptive adversary or an environment that can observe the
history of decisions, based on which it chooses the next loss function.

Basically, the problem is that we make decisions to reduce our loss, but at the same time, the
environment can choose loss functions to increase our loss. With this regard, the stochastic i.i.d.
setting and the adversarial setting are different. We can imagine that an adptive adversary can
make our loss worse than the non-adaptive stochastic sampling of loss functions.

2.4 Stochastic optimization

Stochastic optimization (SO) is an optimization problem of the following form.

minimize
x∈C

Eξ∼P [h(x, ξ)]

where

• ξ is a random parameter vector whose underlying distribution is given by P,

• h(x, ξ) is convex with respect to x for any fixed ξ,

• C is the feasible set for the decision vector x.

Then
f(x) = Eξ∼P [h(x, ξ)]

is convex. For example, for the linear regression problem, we consider

h(β, (x, y)) =
1

2
(y − β>x)2,

and

minimize E(x,y)∼P [h(β, (x, y))] = minimize E(x,y)∼P

[
1

2
(y − β>x)2

]
where x is the feature vector, y is the response variable, and (x, y) follows distribution P.

We can solve the stochastic optimization problem based on online convex optimization. At each
iteration t, we sample a random parameter vector ξt from P, based on which we update our decision
vector. To be more precise, we start with a decision vector x1 ∈ C. Then we obtain a random
vector ξ1, and we adjust our decision vector to obtain a new decision vector x2. We repeat this
procedure for T time steps. We can relate this process to the online convex optimization framework.
For t = 1, . . . , T , we define ft as

ft(x) = h(x, ξt).

4



We decide xt, after which we observe random vector ξt. Hence, we can look at

T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x) =

T∑
t=1

h(xt, ξt)−min
x∈C

T∑
t=1

h(x, ξt),

which is the regret of the corresponding online convex optimization problem. How does it relate to
solving the stochastic optimization problem? For stochastic optimization, we consider the average
of x1, . . . , xT as a candidate solution and compute the optimality gap given by

Eξ1,...,ξT∼P

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗)

where the expectation is taken over the randomness in choosing x2, . . . , xT and x∗ ∈ argminx∈C f(x).

Theorem 14.4. The optimality gap for SO and the regret for OCO satisfy the following relation.

Eξ1,...,ξT∼P

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ 1

T
Eξ1,...,ξT∼P

[
T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x)

]
.

Proof. First we deduce that

Eξ1,...,ξT∼P

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ Eξ1,...,ξT∼P

[
1

T

T∑
t=1

f (xt)

]
− f(x∗)

=
1

T

T∑
t=1

Eξ1,...,ξT∼P [f (xt)]−
1

T

T∑
t=1

f(x∗)

=
1

T

T∑
t=1

Eξ1,...,ξt−1∼P [f (xt)]−
1

T

T∑
t=1

f(x∗).

Note that

T∑
t=1

Eξ1,...,ξt−1∼P [f (xt)]−
T∑
t=1

f(x∗)

=
T∑
t=1

Eξ1,...,ξt−1∼P [Eξt∼P [h(xt, ξt) | ξ1, . . . , ξt−1]]−
T∑
t=1

Eξt∼P [h(x∗, ξt)]

=

T∑
t=1

Eξ1,...,ξt∼P [h(xt, ξt)]−
T∑
t=1

Eξ1,...,ξt∼P [h(x∗, ξt)]

=

T∑
t=1

Eξ1,...,ξT∼P [h(xt, ξt)]−
T∑
t=1

Eξ1,...,ξT∼P [h(x∗, ξt)]

= Eξ1,...,ξT∼P

[
T∑
t=1

h(xt, ξt)−
T∑
t=1

h(x∗, ξt)

]

= Eξ1,...,ξT∼P

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗)

]

≤ Eξ1,...,ξT∼P

[
T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x)

]
.

5



Therefore, we obtain

Eξ1,...,ξT∼P

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ 1

T
Eξ1,...,ξT∼P

[
T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x)

]
,

which provides an upper bound on the optimality gap for stochastic optimization.

This in turn implies that by designing an online algorithm that minimizes the regret term for
the online convex optimization problem, we can solve the stochastic optimization problem. The
following is the application of online gradient descent to our stochastic optimization setting.

Algorithm 2 Online gradient descent for stochastic optimization

Initialize x1 ∈ C.
for t = 1, . . . , T do

Obtain a random vector ξt ∼ P and a subgradient g(xt, ξt) ∈ ∂h(xt, ξt).
Obtain xt+1 = ProjC {xt − ηtg(xt, ξt)} for a step size ηt > 0.

end for

In fact, Algorithm 2 is the so-called stochastic gradient descent method. In particular, it is well-
known that

Eξt∼P [g(xt, ξt)] ∈ ∂f(xt),

which means that g(xt, ξt) is an unbiased estimator of a subgradient of f at xt. This is what we
need for the convergence of stochastic gradient descent!

3 Stochastic gradient descent

Although stochastic gradient descent (SGD) on its own is a very important subject of study in
optimization and machine learning, we present it as an application of online gradient descent. This
section will be a gentle introduction to SGD.

Let us get back to the offline convex optimization stated as

min
x∈C

f(x).

If we have an access to its gradient or one of its subgradients, then we can apply gradient descent or
the subgradient method. However, depending on situations, it may not be realistic to assume that
we have an oracle that provides exact gradients. For example, we have just considered the stochastic
optimization setting where f is given by f(x) = Eξ∼P [h(x, ξ)], the expectation of a random function.
Here, ∇f(x) = Eξ∼P [∇h(x, ξ)], to compute which we need to know the distribution P in general.
Instead of computing the expectation exactly, what we did was to obtain a sample ξt so that we
may use ∇h(x, ξt) for each iteration t. Here ∇h(x, ξt) is an unbiased estimator of ∇f(x).

Another example is the mean squared error minimization problem for regression.

min
β

f(β) =
1

n

n∑
i=1

1

2
(yi − β>xi)2

where (x1, y1), . . . , (xn, yn) are the given data. In fact, this setting is also a stochastic optimization
problem as we can define P as the empirical distribution over the n samples. To be more specific,

P ((x, y) = (xi, yi)) =
1

n
.

6



Then the gradient of f at β is given by

∇f(β) = E(x,y)∼P[∇h(β, (x, y))] = − 1

n

n∑
i=1

(yi − β>xi)xi.

In this example, we know the precise description of the underlying distribution, from which we can
compute the exact gradient. Then, what is the problem? Here, to compute the gradient, we have
to go through all data points (x1, y1), . . . , (xn, yn), which may not be practical especially when the
number of data is large. For this scenario, a strategy is to obtain an estimation of the gradient.
We sample a data (xr, yr) from the data set uniformly at random and obtain

gr = −(yr − β>xr)xr.

Here r is a random variable following the uniform distribution over {1, . . . , n}. Note that

E[gr] =
n∑
i=1

P(r = i) · gi =
n∑
i=1

1

n
· gi = − 2

n

n∑
i=1

(yi − β>xi)xi = ∇f(β).

Hence, gr is an unbiased estimator of gr. What we do next is to use gr to replace ∇f(β) when
running gradient descent. More generally, let g̃x be an unbiased estimator of the gradient of f at
x or the subgradient for f at x.

Algorithm 3 Stochastic gradient descent (SGD)

Initialize x1 ∈ C.
for t = 1, . . . , T do

Obtain an estimator ĝxt of some g ∈ ∂f(xt).
Update xt+1 = ProjC {xt − ηtĝxt} for a step size ηt > 0.

end for
Return (1/T )

∑T
t=1 xt.

Assume that g̃x satisfies

E[ĝx] = g for some g ∈ ∂f(x), E
[
‖ĝx‖2

]
≤ L2.

Under this assumption, let us analyze the performance of stochastic gradient descent given by
Algorithm 3.

Theorem 14.5. Algorithm 3 with step sizes ηt = R/(L
√
t) satisfies

E

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ 3LR

2
√
T

where the expectation is taken over the randomness in gradient estimation and x∗ ∈ argminx∈C f(x).

7



Proof. Suppose that E[g̃xt ] = gt ∈ ∂f(xt) for t ≥ 1. First, let us observe the following.

E

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ E

[
1

T

T∑
t=1

f(xt)

]
− f(x∗)

=
1

T
E

[
T∑
t=1

(f(xt)− f(x∗))

]

≤ 1

T
E

[
T∑
t=1

g>t (xt − x∗)

]

=
1

T
E

[
T∑
t=1

g̃>xt(xt − x
∗)

]

where the inequalities are due to the convexity of f . Now let us consider functions f1, . . . , fT given
by

ft(x) = g̃>xtx.

Then

T∑
t=1

g̃>xt(xt − x
∗) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗)

≤
T∑
t=1

ft(xt)−min
x∈C

T∑
t=1

ft(x)

≤ 3

2
LR
√
T

where the last inequality is from the convergence result of online gradient descent. Note that this
upper bound holds regardless of any realization of g̃xt ’s. Therefore, the result follows.

References

[DSSSC08] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient pro-
jections onto the l1-ball for learning in high dimensions. In Proceedings of the 25th
International Conference on Machine Learning, ICML ’08, page 272–279, New York,
NY, USA, 2008. Association for Computing Machinery.

[FW56] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3(1-2):95–110, 1956.

[Haz16] Elad Hazan. Introduction to online convex optimization. Found. Trends Optim.,
2(3–4):157–325, aug 2016.

[JS10] Martin Jaggi and Marek Sulovský. A simple algorithm for nuclear norm regularized
problems. In Proceedings of the 27th International Conference on International Con-
ference on Machine Learning, ICML’10, page 471–478, Madison, WI, USA, 2010. Om-
nipress.

8


	Outline
	Online convex optimization
	Performance metric: the notion of regret
	Online (sub)gradient descent
	Stochastic vs adversarial
	Stochastic optimization

	Stochastic gradient descent

