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1 Outline

In this lecture, we study

• Frank-Wolfe algorithm,

• Applications in LASSO and matrix completion,

• Introduction to online convex optimization.

2 Projection-free method

We saw that projected gradient descent minimizes a smooth function with a convergence rate of
O(1/T ). There are some issues.

1. The projection step onto the feasible set C can be expensive.

2. We have used the ℓ2 norm to define smoothness.

Each projection step essentially amounts to solving an optimization problem, which can be difficult
depending on the structure of C. Even for the case when C is a polyhedron, the projection onto
C can an expensive procedure. The second point is that in our analysis of gradient descent for
smooth functions, there are parts that do need smoothness with respect to the ℓ2 norm. It is often
the case that smoothness in the ℓ2 norm is implied by smoothness in another norm, e.g., the ℓ1
norm.

∥∇f(x)−∇f(y)∥2 ≤
√
d∥∇f(x)−∇f(y)∥∞ ≤

√
dβ∥x− y∥1 ≤ dβ∥x− y∥2.

The implication of this inequality is the following. Even if a function is smooth in the ℓ1 norm with
a tiny smoothness parameter β, the smoothness parameter with respect to the ℓ2 norm can blow
up by a factor of dimension d, in which case we lose the desired dimension-free property.

2.1 Constrained optimization formulation of LASSO

We studied the folllowing formulation of LASSO given n data points n data points (x1, y1), . . . , (xn, yn).

min
β

1

n
∥y −Xβ∥22 + λ∥β∥1

where

• y = (y1, . . . , yn)
⊤ and the rows of X are x⊤1 , . . . , x

⊤
n ,

• the quadratic term

1

n

n∑
i=1

(yi − β⊤xi)
2 =

1

n
∥y −Xβ∥22

is the mean squared error of regressor β.
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Recall that the formulation is the Lagrangian form of LASSO. The constrained form is given by

minimize
1

n
∥y −Xβ∥22

subject to ∥β∥1 ≤ t

where t is a parameter determining the degree of regularization. Hence, the constrained formulation
is a constrained convex optimization problem

min
C

1

n
∥y −Xβ∥22

where
C =

{
β ∈ Rd : ∥β∥1 ≤ t

}
.

Here, C is a polytope. We may run projected gradient descent to this problem, but it requires
projection onto polytope C which amounts to solving a quadratic program. On the other hand,
we know that the problem of optimizing a linear function over polytope C is a linear program, for
which we have fast solution methods.

2.2 Conditional gradient method: Frank-Wolfe algorithm

Motivated by the issues of projected gradient descent, we consider the conditional gradient method,
introduced by Frank and Wolfe in 1956 [FW56]. Named after the author, the conditional gradient
method is often referred to as the Frank-Wolfe algorithm. A pseudo-code of the method is given
as follows.

Algorithm 1 Frank-Wolfe algorithm

Initialize x1 ∈ C.
for t = 1, . . . , T − 1 do

Take vt ∈ argminv∈C ∇f(xt)
⊤v.

Update xt+1 = (1− λt)xt + λtvt for some 0 < λt < 1.
end for
Return xT .

The main component of the conditional gradient method is to compute the direction vt by solving

min
v∈C

∇f(xt)
⊤v

whose objective is a linear function. In particular, when C is a polyhedron, it is just a linear
program. This is in contrast to projected gradient descent which has a quadratic objective for each
projection step. For this reason, the conditional gradient method is called “projection-free”.

Another difference compared to projected gradient descent is that the direction we take for an
update can be different from −∇f . We provide Figure 13.1 for a pictorial description of the update
rule. vt is a point up to which we can move as far as we can in the direction of −∇f(xt) within C.
Then we take a convex combination of the current point xt and vt to obtain the new iterate xt+1.

Definition 13.1. We say that a differentiable function f : Rd → R is β-smooth with respect to a
norm ∥ · ∥ for some β > 0 if

∥∇f(x)−∇f(y)||∗ ≤ β∥x− y∥

holds for any x, y ∈ Rd where ∥ · ∥∗ denotes the dual norm of ∥ · ∥.
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Figure 13.1: Illustration of an update from conditional gradient descent

The next theorem shows that conditional gradient descent converges with rate O(1/T ) for any
smooth function with repsect to an arbitrary norm.

Theorem 13.2. Let f : Rd → R be a convex function that is β-smooth with respect to a norm ∥ · ∥
for some β > 0. Let {xt : t = 1, . . . , T} be the sequence of iterates generated by the Frank-Wolfe
algorithm with

λt =
2

t+ 1

for each t. Then for any t ≥ 2,

f(xt)− f(x∗) ≤ 2βR2

t+ 1

where x∗ is an optimal solution to minx∈C f(x) and R = supx,y∈C ∥x− y∥.

Proof. Note that

f(xt+1)− f(xt) ≤ ∇f(xt)
⊤(xt+1 − xt) +

β

2
∥xt+1 − xt∥2

= λt∇f(xt)
⊤(vt − xt) +

β

2
∥xt+1 − xt∥2

≤ λt∇f(xt)
⊤(x∗ − xt) +

β

2
∥xt+1 − xt∥2

≤ λt(f(x
∗)− f(xt)) +

β

2
∥xt+1 − xt∥2

where the first inequality is from the β-smoothness of f , the first equality follows from xt+1 =
(1 − λt)xt + λtvt, the second inequality is due to the definition of vt = argminv∈C ∇f(xt)

⊤v, and
the last inequality is by the convexity of f . Since

∥xt+1 − xt∥ = λt∥vt − xt∥ ≤ λtR,

it follows that

f(xt+1)− f(x∗) ≤ (1− λt)(f(xt)− f(x∗)) +
βλ2

tR
2

2

=
t− 1

t+ 1
(f(xt)− f(x∗)) +

2βR2

(t+ 1)2
.

By this inequality, it follows that

f(x2)− f(x∗) ≤ βR2

2
≤ 2βR2

3
.
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Then by the induction hypothesis,

f(xt+1)− f(x∗) ≤ 2(t− 1) + 2

(t+ 1)2
βR2 =

t

(t+ 1)2
2βR2 ≤ 1

t+ 2
βR2,

as required.

2.3 Low-rank matrix completion

Let A ∈ Rn×p be a partially observable matrix, of which the missing entries are filled with 0. We
assume that even the non-zero entries of A are some noisy observations of the true values.

Such a matrix A arises in movie rating systems, in which case the rows of A correspond to the
users and the columns correspond to the list of movies. Hence, n is the number of users and p is
the number of movies. Here, one reasonable assumption is that the movie ratings of users depend
on a small set of features and criteria. One way to model this is to impose that the true rating
matrix A∗ satisfies

A ∼= A∗ = UV ⊤

where U is an n× k matrix and V is a p× k matrix with k < n, p. By A∗ = UV ⊤, the true rating
matrix A∗ has rank at most k. Then, to infer the true matrix A∗, we may attempt to solve the
following problem.

minimize
1

2
∥A−X∥2F

subject to rank(X) ≤ k

where ∥ · ∥F denotes the Frobenius norm, which essentially extends the ℓ2 norm over vectors to
matrices. Here, the low-rank constraint rank(X) ≤ k is non-convex, so we may consider the
following problem instead.

minimize
1

2
∥A−X∥2F

subject to ∥X∥nuc ≤ k
(13.1)

where ∥ · ∥nuc denotes the nuclear norm. Here, (13.1) is a constrained convex optimization problem
where the constraint set is given by

C =
{
X ∈ Rn×p : ∥X∥nuc ≤ k

}
.

To solve (13.1), the first approach is to apply projected gradient descent over the constraint set
C. It is known that projection onto the constraint set C amounts to computing the singular value
decomposition of A [DSSSC08].

The second approach is to use the Frank-Wolfe algorithm. GIven a current iterate matrix Xt, the
Frank-Wolfe update step considers

Vt ∈ argmin
{
Tr((A−Xt)

⊤V ) : ∥V ∥nuc ≤ k
}
.

The associated minimization problem is equivalent to computing the top left and right singular
vectors of Xt − A, for which we may apply the classical power method [JS10]. Here, the power
method does not compute the full singular value decomposition, so it runs faster than the projection
operation.
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3 Introduction to online convex optimization

We have so far discussed formulations and algorithms for convex optimization. In this section,
we consider a different yet closely related setting. Online convex optimization (OCO) is an online
learning problem, that is to make a squence of predictions based on the history of past decisions
and their results. The framework of OCO is closely related to game theory, statistical learning
theory, and stochastic modelling as well as convex optimization. The contents of this section are
based on the text of Hazan [Haz16].

Let us provide some applications of the OCO framework.

• (Online spam filtering) We receive emails repeatedly, for each of which we apply an existing
spam-filtering system. A spam-filtering system has a list of words and expressions, based on
which, it can predict whether an email is spam or valid. When an email that is classified as
valid by the existing filter tunrs out to be spam, we have to update the filter so that we can
filter similar spam emails later.

• (Online advertisement selection) A web browser selects a collection of online advertisements
for its ad slots. The web browser posts a catalog of online ads and observes their popularity
from users by the click-through rates. Later, the browser can change its ad selection based
on its prediction about the user demands.

3.1 Online binary classification

Let us consider a mathematical model to establish an email spam filtering system. Recall that we
used the support vector machine (SVM) for binary classification. Just to remind you what it was,
we find a pair of a coefficient vector w and a right-hand side value b to use the hyperplane w⊤x = b
to classify data points. Given a feature vector x, we assign it label sign(w⊤x− b) where sign(c) has
value 1 if c ≥ 0 and value −1 if c < 0. When a training set of multiple data is available, we can find
such a classifier (w, b) by solving a convex optimization problem whose objective is to minimize the
hinge loss.

However, in some scenarios, data points dynamically arrive so that we gradually accumulate the
data. In such cases, we may adjust our model over time, and the learning process continues. To
be more specific, let us consider the online binary classification problem described as follows. An
email is represented by its feature vector x ∈ Rd and label y ∈ {−1, 1}. The feature vector can
encode words and expressions written in it, while the label indicates whether the email is spam
or not. Let’s say that y = 1 indicates spam and y = −1 indicates valid. For each time slot t, we
repeat the following procedure.

• The spam filtering system prepares a classifier (wt, bt) based on the past emails represented
by (x1, y1), . . . , (xt−1, yt−1) ∈ Rd × {−1, 1}.

• New email with feature vector xt arrives.

• The spam filter predicts that its label is sign(w⊤
t xt − b), while the true label of the email is

yt.

• The spam filter incurs a loss of max{0, 1− yt(w
⊤
t xt − b)}.
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After T emails, the cumulative loss is given by

T∑
t=1

max{0, 1− yt(w
⊤
t xt − b)}.

Compared to a best classifier, we incur

T∑
t=1

max{0, 1− yt(w
⊤
t xt − b)} − min

(w,b)∈Rd×R

T∑
t=1

max{0, 1− yt(w
⊤xt − b)}

more loss. Denoting the loss function at each time t as

ft(w, b) = max{0, 1− yt(w
⊤xt − b)},

the excess cumulative loss is rewritten as

T∑
t=1

ft(wt, bt)− min
(w,b)∈Rd×R

T∑
t=1

ft(w, b).

Therefore, the online binary classification problem is an instance of online convex optimization
where the best fixed decision corresponds to the best spam classifier.

3.2 Adversarial multi-armed bandits

Suppose that we have d slot machines (or bandits). Then, at each t, the player chooses which slot
machine to play. Here, let it ∈ {1, . . . , d} be the machine that the player choses at time t. Then
the reward of playing machine i ∈ {1, . . . , d} at time t is given by ri,t, which is revealed only after
a play. Then we may compare the player’s cumulative reward against the total reward of the best
slot machine as follows.

max
i∈{1,...,d}

T∑
t=1

rt,i −
T∑
t=1

rt,it .
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