
IE 539: Convex Optimization KAIST, Fall 2023
Lecture #12: Projected gradient methods, Acceleration: gradient descent with mo-
mentum, Oracle complexity lower bounds October 11, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

• Projected gradient descent for constrained minimization.

• Lower bounds on the iteration complexity of a first-order method,

• Accelerated method: gradient descent with momentum,

2 Projected gradient descent

So far, we considered gradient descent for unconstrained convex minimization under various set-
tings. Gradient descent proceeds with the update rule

xt+1 = xt − ηt∇f(xt).

If f is not differentiable, we may take a subgradient g ∈ ∂f(xt) at xt instead of the gradient.

For the constrained case, however, the update rule does not necessarily generate a feasible solution.
A natural fix for this is that we take the projection of the point xt − ηt∇f(xt) onto the feasible set

Figure 12.1: Infeasible point after a gradient descent update and projection

C. What we have just discussed is basically the projected gradient descent method! It is basically
gradient descent with projection. To formalize, let us give a pseudo-code of the projected gradient
descent method. In Algorithm 1, we use the operator ProjC(·), which is formally defined as

ProjC(z) = argmin
x∈C

1

2
∥x− z∥22 for z ∈ Rd.

Then it is straightforward that

ProjC(z) = argmin
x∈C

∥x− z∥2,

1



Algorithm 1 Projected gradient descent method

Initialize x1 ∈ C.
for t = 1, . . . , T do

xt+1 = ProjC {xt − ηt∇f(xt)} for a step size ηt > 0.
end for
Return xT+1.

and in words, ProjC(z) is a point C that is closest to point z with respect to the ℓ2 norm distance.
Although we have discussed the following lemma in a previous lecture, we include it again to make
this note self-contained.

Lemma 12.1. Let x ∈ C and z ∈ Rd. Then

(ProjC(z)− z)⊤(ProjC(z)− x) ≤ 0 for all x ∈ C.

Proof. We can apply the optimality condition to the definition ProjC(z) = argminx∈C
1
2∥x −

z∥22 for z ∈ Rd. The gradient of 1
2∥x− z∥22 at x = ProjC(z) is (ProjC(z)− z). Then the statement

is precisely the optimality condition for ProjC(z).

By definition, xt+1 is the point in C that is closest to xt−ηt∇f(xt) with respect to the ℓ2 distance.
Moreover, we have another interpretation of the update rule based on the following.

xt+1 = argmin
x∈C

{
1

2
∥x− xt + µt∇f(xt)∥22

}
= argmin

x∈C

{
f(xt) +∇f(xt)

⊤(x− xt) +
1

2ηt
∥x− xt∥22

}
,

which means that xt+1 is the solution in C minimizing the quadratic approximation of f at xt.

Hereinafter, we introduce notations yt+1 to denote xt − ηt∇f(xt) for simpler presentations. Then
the update rule can be written as

yt+1 = xt − ηt∇f(xt),

xt+1 = ProjC(yt+1)

for t = 1, . . . , T . The analysis of projected gradient descent is quite similar to that of gradient
descent for unconstrained minimization. The following is useful to make the analysis for gradient
descent go through for the case of projected gradient descent.

Lemma 12.2. For any t, we have

∥xt+1 − x∗∥2 ≤ ∥yt+1 − x∗∥2

where x∗ is an optimal solution to minx∈C f(x).

Proof. We use Lemma 12.1 and the fact that xt+1 = ProjC(yt+1). By Lemma 12.1,

(xt+1 − yt+1)
⊤(xt+1 − x∗) ≤ 0.

Since xt+1 − yt+1 = xt+1 − x∗ + x∗ − yt+1, the inequality implies that

∥xt+1 − x∗∥22 ≤ (yt+1 − x∗)⊤(xt+1 − x∗) ≤ ∥yt+1 − x∗∥2∥xt+1 − x∗∥2

where the last inequality is due to the Cauchy-Schwarz inequality. Dividing each side by ∥xt+1 −
x∗∥2, we obtain the result.

2



By Lemma 12.2, we deduce that

∥xt+1 − x∗∥22 ≤ ∥yt+1 − x∗∥2
= ∥xt − x∗∥22 − 2ηt∇f(xt)

⊤(xt − x∗) + η2t∇f(xt)
2

≤ ∥xt − x∗∥22 − 2ηt(f(xt)− f(x∗)) + η2t∇f(xt)
2,

which appears in the convergence analysis of gradient descent for Lipschitz continuous functions.
Note that the only difference from the unconstrained case is the first inequality, which used to be
an equality for the unconstrained case where yt+1 = xt+1. Based on this, we recover the same
convergence theorem for projected gradient descent for the case of Lipschitz continuous functions.
In fact, we can work over the projected subgradient method, which is as the name suggests the
subgradient method with projection for the constrained minimization.

Algorithm 2 Projected subgradient method

Initialize x1 ∈ C.
for t = 1, . . . , T do

Obtain a subgradient gt ∈ ∂f(xt).
xt+1 = ProjC {xt − ηtgt} for a step size ηt > 0.

end for
Return (

∑T
t=1 ηt)

−1
∑T

t=1 ηtxt.

The following theorem shows the convergence of the projected subgradient method for functions
that have bounded subgradients.

Theorem 12.3. Let f : Rd → R be a convex function such that ∥g∥2 ≤ L for any g ∈ ∂f(x)
for every x ∈ Rd. Let {xt : t = 1, . . . , T} be the sequence of iterates generated by the projected
subgradient method with step size ηt = ∥x1 − x∗∥2/L

√
T for each t. Then

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ L∥x1 − x∗∥2√

T

where x∗ is an optimal solution to minx∈C f(x).

Moreover, we also recover the same “asymptotic” convergence rate for strongly convex, smooth,
and strongly convex & smooth functions. In particular,

Theorem 12.4. Let f : Rd → R be a β-smooth convex function, and let {xt : t = 1, . . . , T} be the
sequence of iterates generated by gradient descent with step size ηt = 1/β for each t. Then

f(xT )− f(x∗) ≤ 3β∥x1 − x∗∥22 + f(x1)− f(x∗)

T

where x∗ is an optimal solution to minx∈C f(x).

3 Lower bounds on the iteration complexity of gradient methods

We discussed the convergence rates of gradient descent and the subgradient method. In particular,
for Lipschitz continuous functions, we know that the subgradient method guarantees the conver-
gence rate of O(1/

√
T ) and requires O(1/ϵ2) iterations to achieve the error bounded by ϵ. For

3



smooth convex functions, gradient descent achieves O(1/T ) convergence rate, and the number of
required iterations to bound the error by ϵ is O(1/ϵ). For functions that are both smooth and
strongly convex, the convergence rate of gradient descent is O(γT ) for some 0 < γ < 1, and the
number of required iterations is O(log(1/ϵ)) to achieve an error of ϵ.

A natural question is as to whether we can find an algorithm that achieves a better convergence
rate. Regarding this question, we conceptualize the (first-order) oracle complexity of an algorithm.
A first-order oracle for convex minimization minx∈C f(x) takes a point x in C as an input and

Figure 12.2: Oracle that returns the function value and the first-order information

returns its function value f(x) as well as the first-order information, i.e., the gradient ∇f(x) or a
subgradient gt ∈ ∂f(x). Then the oracle complexity of an oracle-based algorithm counts the number
of oracle calls to terminiate. An oracle-based algorithm can be illustrated as follows. Basically, it

Figure 12.3: Illustration of an oracle-based algorithm

picks a new solution based on the history of past iterates and their first-order information.

We present some lower bound results on the oracle complexity given by Nemirovski and Yudin in
1983 [NY83] (see also Nesterov [Nes03] and Bubeck [Bub15]). We make the assumption that x1 = 0
and xt+1 belongs to the span of g1, . . . , gt where gs ∈ ∂f(xs).

Theorem 12.5 (See [Bub15]). There exists a convex and L-Lipschitz continuous function f : Rd →
R for some L > 0 such that iterates x1, . . . , xt with t ≤ d generated by any oracle-based algorithm
satisfies the following:

min
1≤s≤t

f(xs)− min
x∈B2(R)

f(x) ≥ RL

2(1 +
√
t)

where B2(R) = {x ∈ Rd : ∥x∥2 ≤ R} and R > 0.

Theorem 12.6 (See [Bub15]). There exists a convex and β-smooth fuction f : Rd → R with respect
to the ℓ2-norm for some β > 0 such that iterates x1, . . . , xt with t ≤ (d − 1)/2 generated by any
oracle-based algorithm satisfies the following:

min
1≤s≤t

f(xs)− min
x∈Rd

f(x) ≥ 3β∥x1 − x∗∥22
32(t+ 1)2

.

Theorem 12.7 (See [Bub15]). There exists a β-smooth and α-strongly convex fuction f : Rd → R
with respect to the ℓ2-norm for some β ≥ α > 0 such that xt with t ≥ 1 generated by any oracle-based
algorithm satisfies the following:

f(xt)− min
x∈Rd

f(x) ≥ α

2

(√
κ− 1√
κ+ 1

)2(t−1)

∥x1 − x∗∥22.

4



4 Accelerated gradient method

We just argued in the previous section that for smooth functions, there is some gap between the
convergence rate of gradient descent and the oracle lower bound. Can we find an algorithm that
achieves a better convergence rate or improve the lower bound? The answer to the question is that
there is indeed a better algorithm, which closes the gap, thereby achieving the optimal asymptotic
convergence rate. The algorithm is due to Nesterov [Nes83, Nes04], and it is referred to as Nesterov’s
accelerated gradient descent. Let us describe the algorithm and explain how it achieves a better
convergence rate.

The main idea behind Nesterov’s acceleration is to use “momentum”, so the algorithm is often
called gradient descent with momentum. Recall that gradient descent for a β-smooth function
follows the update rule of

xt+1 = xt −
1

β
∇f(xt)

from a given point xt. The idea of momentum is to incorporate the direction xt − xt−1 that we
took when moving from xt−1 to xt to obtain the next iterate xt+1. Then xt+1 is determined by not
only the previous iterate xt but also xt−1 which is the one before xt. Figure 12.4 illustrates how
the idea of momentum applies. Instead of applying the gradient descent update to xt, we move a

Figure 12.4: Illustration of gradient descent with momentum

bit further from xt along the momentum direction that we took from xt−1 to xt. Let γt > 0 be a
weight, and

yt = xt + γt(xt − xt−1).

Then we apply the gradient descent update on yt to obtain the next point xt+1, as follows.

xt+1 = yt −
1

β
∇f(yt).

Algorithm 3 summarizes Nesterov’s accelerated gradient descent that we just explained. The fol-

Algorithm 3 Nesterov’s accelerated gradient descent

Initialize x1 ∈ dom(f).
Set x0 = x1.
for t = 1, . . . , T do

yt = xt + γt(xt − xt−1) for some γt > 0.
xt+1 = yt − 1

β∇f(yt).
end for
Return xT+1.

lowing shows a convergence result of the accelerated gradient descent method for smooth functions.

5



Theorem 12.8. Let f : Rd → R be a β-smooth convex function in the ℓ2 norm. We set γt by the
following procedure.

λ0 = 1, λt ≤
1 +

√
1 + 4λ2

t−1

2
, γt =

λt − 1

λt+1
.

Then

f(xT )− f(x∗) ≤ 2β∥x1 − x∗∥22
T 2

where x∗ is an optimal solution to minx∈Rd f(x).

For example, we may set

λt =
t+ 2

2
, t ≥ 0.

Hence, the convergence rate is O(1/T 2), which matches the oracle lower bound. The number of
required iterations to bound the error by ϵ is O(1/

√
ϵ). The next result is for functions that are

both smooth and strongly convex.

Theorem 12.9. Let f : Rd → R be a convex function that is β-smooth and α-strongly convex in
the ℓ2 norm. We set

γt =

√
κ− 1√
κ+ 1

where κ = β/α. Then

f(xT )− f(x∗) ≤ α+ β

2

(√
κ− 1√
κ+ 1

)(T−1)/2

∥x1 − x∗∥22.

where x∗ is an optimal solution to minx∈Rd f(x).

References

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Found. Trends
Mach. Learn., 8(3–4):231–357, 2015. 3, 12.5, 12.6, 12.7

[FW56] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3(1-2):95–110, 1956. 5

[Nes83] Yurii Nesterov. A method of solving a convex programming problem with convergence
rate o(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983. 4

[Nes03] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003. 3

[Nes04] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer
Academic Publishers, Norwell, 2004. 4

[NY83] Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and
method efficiency in optimization. 1983. 3

6


	Outline
	Projected gradient descent
	Lower bounds on the iteration complexity of gradient methods
	Accelerated gradient method
	Conditional gradient method

