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1 Outline

In this lecture, we study

• Convergence of gradient descent for strongly convex functions,

• Subgradient and subdifferential,

• Subgradient method,

• Convergence rate of gradient descent for smooth functions.

2 Convergence of gradient descent

2.1 Lipschitz continuous and strongly convex functions

We say that a function is strongly convex in the ℓ2-norm if there exists some α > 0 such that

f(x)− α

2
∥x∥22

is convex. More precisely, we say that f is α-strongly convex in the norm ∥ · ∥2. If f is α-strongly
convex, then we have

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
α

2
∥y − x∥22.

If we assume strong convexity, then we deduce a faster convergence.

Theorem 10.1. Let f : Rd → R be L-Lipschitz continuous and α-strongly convex in the ℓ2-norm,
and let {xt : t = 1, . . . , T} be the sequence of iterates generated by gradient descent with step size

ηt =
2

α(t+ 1)

for each t. Then

f

(
T∑
t=1

2t

T (T + 1)
xt

)
− f(x∗) ≤ 2L2

α(T + 1)

where x∗ is an optimal solution to minx∈Rd f(x).

Here, we take an weighted average of the points x1, . . . , xT . The converge rate is O(1/T ), and after
O(1/ϵ) iterations, we have

f

(
T∑
t=1

2t

T (T + 1)
xt

)
− f(x∗) ≤ ϵ.
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2.2 Smooth and strongly convex functions

If function f is β-smooth and α-strongly convex in the ℓ2-norm, then it follows that

α

2
∥y − x∥22 ≤ (f(y)− f(x))−∇f(x)⊤(y − x) ≤ β

2
∥y − x∥22.

Here, we call κ = β/α the condition number of f . In fact, when f is both smooth and strongly
convex, it leads to a drastic improvement in the convergence rate. The convergence rate depends
on the condition number κ.

Theorem 10.2. Let f : Rd → R be β-smooth and α-strongly convex in the ℓ2-norm, and let
{xt : t = 1, . . . , T + 1} be the sequence of iterates generated by gradient descent with sep size

ηt =
2

α+ β

for each t. Then

f(xT+1)− f(x∗) ≤ β

2
exp

(
− 4T

κ+ 1

)
∥x1 − x∗∥22

where x∗ is an optimal solution to minx∈Rd f(x).

Note that exp(−4/(κ+1)) < 1, and therefore, the convergence rate is O(cT ) where c = exp(−4/(κ+
1)) < 1. Hence, we achieve a linear rate of convergence, and after T = O(log(1/ϵ)) iterations, we
have

f(xT+1)− f(x∗) ≤ ϵ.

3 Subgradients

The first-order characterization of convex functions states that a differentiable function f is convex
if and only if dom(f) is convex and

f(y) ≥ f(x) +∇f(x)⊤(y − x)

for all x, y ∈ dom(f). For a non-differentiable function, we can define the notion of subgradients as
well as subdifferentials.

Definition 10.3. Given a convex function f : Rd → R and a point x ∈ dom(f), the subdifferential
of f at x is defined as

∂f(x) =
{
g : f(y) ≥ f(x) + g⊤(y − x) ∀y ∈ dom(f)

}
.

Here, any g ∈ ∂f(x) is called a subgradient of f at x.

Conversely, the subdifferential is the set of subgradients. If function f is differentiable at x, then
we have ∂f(x) = {∇f(x)}, and therefore, the subdifferential reduces to the gradient. In contrast,
a non-differentiable function may have more than one subgradient. Moreover, note that for any
subgradient g at x, f(x) + g⊤(y − x) provies a lower approximation of the function f .

Recall that for a differentiable univariate function f , the gradient of f at some point x is the slope
of the line tangent to f at x. We have a similar geometric intuition for subgradients. Consider the
the absolute value function f(x) = |x| over x ∈ R, which is not differentiable at x = 0. As depicted
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Figure 10.1: Subgradients of f(x) = |x| at x = 0

in Figure 10.1, there are multiple lines that are below f(x) = |x| and go through x = 0. In fact,
the subdifferential of f can be computed as follows.

∂f(x) =


{−1} = {sign(x)}, for x < 0

[−1, 1], for x = 0

{+1} = {sign(x)}, for x > 0

=

{
{sign(x)}, for x ̸= 0

[−1, 1], for x = 0.

Let us consider a few more examples.

Example 10.4. Let f(x) = ∥x∥1 : Rd → R. Then the subdifferential of f at any point x =
(x1, . . . , xd)

⊤ is the set of vectors g = (g1, . . . , gd)
⊤ such that for each i ∈ [d],

gi =

{
sign(xi), if xi ̸= 0

[−1, 1], if xi = 0.
.

Example 10.5. Let f1, . . . , fk be convex functions, and let f be defined as the pointwise maximum
of f1, . . . , fk. Given a point x, if f(x) = fi(x) for some i ∈ [k], then any subgradient of fi is a
subgradient of f .

Example 10.6. Given a convex set C ⊆ Rd, the indicator function IC(x) at a point x ∈ Rd is
defined as

IC(x) =

{
0, if x ∈ C

+∞, if x /∈ C
.

For a point x ∈ C, what is the subdifferential of the indicator function at x? Note that

∂IC(x) =
{
g ∈ Rd : 0 ≥ 0 + g⊤(y − x) ∀y ∈ C

}
= NC(x)

where NC(x) denotes the normal cone of C at x. Therefore, the subdifferential of the indicator
function for C at x is precisely the normal cone of C at x.

4 Subgradient method

We discussed the gradient descent method for minimizing a differentiable convex function. For
non-differentiable convex functions, we can consider subgradients and use the subgradient method
described as follows.
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Algorithm 1 Subgradient method

Initialize x1 ∈ dom(f).
for t = 1, . . . , T do

Obtain a subgradient gt ∈ ∂f(xt).
xt+1 = xt − ηtgt for a step size ηt > 0.

end for

We will show that the subgradient method given by Algorithm 1 converges if the subgradients of f
are bounded. Recall that for the differentiable case, the ℓ2 norm of f ’s gradient is bounded if and
only if f is Lipschitz continuous.

Theorem 10.7. Let f : Rd → R be a convex function such that ∥g∥2 ≤ L for any g ∈ ∂f(x)
for every x ∈ Rd. Let {xt : t = 1, . . . , T} be the sequence of iterates generated by the subgradient
method with step size

ηt =
∥x1 − x∗∥2

L
√
T

for each t. Then

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ L∥x1 − x∗∥2√

T

where x∗ is an optimal solution to minx∈Rd f(x).

Proof. Note that

∥xt+1 − x∗∥22 = ∥xt − ηtgt − x∗∥22
= ∥xt − x∗∥22 − 2ηg⊤t (xt − x∗) + η2∥gt∥22
≤ ∥xt − x∗∥22 − 2ηt(f(xt)− f(x∗)) + η2t ∥gt∥22

where the inequality follows from f(x∗) ≥ f(xt)+ g⊤t (x
∗−xt) as gt is a subgradient at xt. The rest

of the proof is the same as the argument used for the differentiable case.

Here, the step size η has the order of O(1/
√
T ) when we run the subgradient method for T iterations.

Then the convergence rate is O(1/
√
T ), and the number of required iterations to bound the error

by ϵ is O(1/ϵ2).

The important property of the subgradient method is that it is “dimension-free” in the sense that
the algorithm and the convergence rate do not depend on the ambient dimension d. In many
applications, we have a moderate tolerance for the error ϵ while the dimension d is huge. For such
applications, the fact that the subgradient method is dimension-free has a huge advantage.

5 Convergence of gradient descent for smooth functions

We say that a differentiable function f : Rd → R is β-smooth with respect to the ℓ2 norm for some
β > 0 if

∥∇f(x)−∇f(y)||2 ≤ β∥x− y∥2
holds for any x, y ∈ Rd. Smooth functions have the self-tuning property! By the optimality
condition (for unconstrained problmes), we have ∇f(x∗) = 0 for any optimal solution x∗. Then
the smoothness assumption implies that the gradient gets close to 0 as we approach an optimal
solution. This is in contrast to a non-differentiable function, e.g., f(x) = |x| over R.
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Figure 10.2: Smooth functions vs non-smooth functions

Recall that the gradient descent method for Lipschitz continuous functions requires a constant but
small step size O(1/

√
T ) where T is the total number of iterations. This is partly because the

subgradient does not get smaller even we converge to an optimal solution. In contrast, for smooth
functions, we can take large step sizes, because the gradient gets reduced as we converge to an
optimal solution. This is referred to as the self-tuning property.

Next we prove the convergence result for smooth function. The first thing we observe is that a
gradient step for a smooth function can always guarantee a strict improvement. To explain this,
take a differentiable and β-smooth function f : Rd → R. Then a gradient step is given by

xt+1 = xt − ηt∇f(xt).

Note that

f(xt+1) ≤ f(xt) +∇f(xt)
⊤(xt+1 − xt) +

β

2
∥xt+1 − xt∥22

= f(xt) +

(
−ηt +

η2t β

2

)
∥∇f(xt)∥22

≤ f(xt)−
1

2β
∥∇f(xt)∥22

where the first inequality follows from the β-smoothness of f and the second inequality is because
the term inside the parenthesis is a quadratic function in ηt which can be maximized at ηt = 1/β.
Therefore, when ηt = 1/β, we obtain

f(xt+1) ≤ f(xt)−
1

2β
∥∇f(xt)∥22,

which implies that f(xt+1) is strictly better than f(xt) when xt is not an optimal solution. Based
on this observation, we can prove the following convergence result for smooth functions.

Theorem 10.8. Let f : Rd → R be β-smooth in the ℓ2-norm and convex, and let {xt : t =
1, . . . , T + 1} be the sequence of iterates generated by gradient descent with step size

ηt =
1

β

for each t. Then

f(xT+1)− f(x∗) ≤ β∥x1 − x∗∥22
2T

where x∗ is an optimal solution to minx∈Rd f(x).
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Proof. Note that

f(xt+1) ≤ f(xt)−
1

2β
∥∇f(xt)∥22

≤ f(x∗)−∇f(xt)
⊤(x∗ − xt)−

1

2β
∥∇f(xt)∥22

= f(x∗) +
β

2

(
∥xt − x∗∥22 − ∥xt+1 − x∗∥22

)
where the second inequality is because f(xt) + ∇f(xt)

⊤(x − xt) is a lower bound on f and the
equality follows because xt+1 = xt − (1/β)∇f(xt). This implies that

f(xt+1)− f(x∗) ≤ β

2

(
∥xt − x∗∥22 − ∥xt+1 − x∗∥22

)
,

summing which over t = 1, . . . , T and dividing the resulting one by T , we obtain

1

T

T∑
t=1

f(xt+1)− f(x∗) ≤ β

2T

(
∥x1 − x∗∥22 − ∥xT+1 − x∗∥22

)
≤ β

2T
∥x1 − x∗∥22.

Recall that each gradient step for smooth functions leads to an improvement, i.e., f(xt+1) ≤ f(xt).
Therefore,

f(xT+1)− f(x∗) ≤ 1

T

T∑
t=1

f(xt+1)− f(x∗) ≤ β

2T
∥x1 − x∗∥22,

as required.

The important takeaway is that we took a constant step size 1/β, which does not depend on the
number of iterations T . This is due to the self-tuning property of smooth functions. Although we
do not shrink the step size, the change between the current iterate xt and the next iterate xt+1 gets
reduced as we approach an optimal solution.

As discussed before, the term ∥x1 − x∗∥2 and the smoothness parameter β are all fixed constants.
Hence, the convergence rate is O(1/T ). Therefore, after T = O(1/ϵ) iterations, we have

f(xT+1)− f(x∗) ≤ ϵ.

Note that the convergence results for smooth functions improves over O(1/
√
T ) and O(1/ϵ2) for the

subgradient method. Moreover, let us compare the last steps of their analyses. For the subgradient
method, we had

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ 1

T

T∑
t=1

f(xt)− f(x∗) ≤ ∥x1 − x∗∥22
2ηT

+
η

2
L2,

whereas the last step for smooth functions was that

f(xT+1)− f(x∗) ≤ 1

T

T∑
t=1

f(xt+1)− f(x∗) ≤ ∥x1 − x∗∥22
2ηT

.

These are almost the same, but for smooth functions, we did not have the additional term ηL2/2
on the right-hand side. Moreover, we used the fact that each gradient step improves the objective.
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