IE 539 Convex Optimization Assignment 1

Fall 2023

Out: 12th September 2023

Due: 25th September 2023 at 11:59pm

Instructions

- Submit a PDF document with your solutions through the assignment portal on KLMS by the due date. Please ensure that your name and student ID are on the front page.
- Late assignments will not be accepted except in extenuating circumstances. Special consideration should be applied for in this case.
- It is required that you typeset your solutions in LaTeX. Handwritten solutions will not be accepted.
- Spend some time ensuring your arguments are coherent and your solutions clearly communicate your ideas.

Question:	1	2	3	4	Total
Points:	10	20	35	35	100

1. (10 points) Prove that a function is covex if and only if its epigraph is a convex set.
2. (20 points) Suppose that $g_{1}, \ldots, g_{p}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ are convex and $h_{1}, \ldots, h_{q}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ are affine functions. Prove that

$$
C:=\left\{x \in \mathbb{R}^{d}: g_{i}(x) \leq 0 \text { for } i=1, \ldots, p, h_{i}(x)=0 \text { for } j=1, \ldots, q\right\}
$$

is a convex set.
3. Verify convexity/concavity of the following functions. You may use the first-order and second-order characterizations of convex functions, while there exists a direct proof based on the definition of convex functions.
(a) (5 points) The negative entropy function is convex on \mathbb{R}_{++}^{d} :

$$
f(x):=\sum_{i \in[d]} x_{i} \log \left(x_{i}\right)
$$

(b) (10 points) The geometric mean is concave on \mathbb{R}_{++}^{d} :

$$
f(x)=\left(\prod_{i \in[d]} x_{i}\right)^{1 / d}
$$

[Hint: compute $\frac{\lambda f(x)+(1-\lambda) f(y)}{f(\lambda x+(1-\lambda) y)}$. You may use (without proof) the arithmetic-geometric mean inequality: $\left.\left(\prod_{i \in[d]} x_{i}\right)^{1 / d} \leq \frac{1}{d} \sum_{i \in[d]} x_{i}.\right]$
(c) (10 points) The conjugate of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$:

$$
f^{*}(x)=\sup _{y \in \mathbb{R}^{d}}\{\langle y, x\rangle-f(y)\}
$$

(d) (10 points) The sum of k largest components of $x \in \mathbb{R}^{d}$:

$$
f(x)=x_{\sigma(1)}+\cdots+x_{\sigma(k)}
$$

where $x_{\sigma(1)} \geq \cdots \geq x_{\sigma(d)}$ are the rearrangement of x_{1}, \ldots, x_{d} in nonincreasing order.
4. This question asks you to show that the following formulation for uncertainty quantification is a convex optimization problem.

$$
\begin{array}{cl}
\operatorname{maximize} & x^{\top}(\bar{\Sigma}+S) x \\
\text { subject to } & \bar{\Sigma}+S \succeq 0, \\
& \|S\|_{\text {nuc }} \leq \epsilon, \\
& S \in \mathbb{R}^{d \times d}
\end{array}
$$

where $\bar{\Sigma}$ is an empirical covariance matrix and $A \succeq 0$ means matrix A being positive semidefinite.
(a) (20 points) The nuclear norm of a square matrix $S \in \mathbb{R}^{d \times d}$ is defined as

$$
\|S\|_{\mathrm{nuc}}=\sum_{i=1}^{d} \sqrt{\lambda_{i}\left(S^{\top} S\right)}
$$

where $\lambda_{1}\left(S^{\top} S\right), \ldots, \lambda_{d}\left(S^{\top} S\right)$ are the eigenvalues of $S^{\top} S$. Prove that the nuclear norm is a norm.
(b) (10 points) Prove that

$$
\left\{S \in \mathbb{R}^{d \times d}: \bar{\Sigma}+S \succeq 0\right\}
$$

is a convex set.
(c) (5 points) Prove that the formulation is a convex optimization problem.

