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1 Outline

In this lecture, we cover

• deriving the dual linear program,

• linear programming duality theorems.

2 Deriving the dual linear program

Suppose that we have a linear program in the most general form as follows.

min c⊤x

s.t. a⊤i x ≤ bi, i ∈ ML

a⊤i x = bi, i ∈ ME

a⊤i x ≥ bi, i ∈ MG

xj ≤ 0, j ∈ DL

xj free, j ∈ DF

xj ≥ 0, j ∈ DG

where ML,ME ,MG ⊆ [m] and DL, DF , DG ⊆ [d] are index partitions. To provide a strong lower
bound on this linear program, we derive the dual linear program. As in the example from the
last lecture, we take multipliers for the constraints and aggregate them to provide a lower bound on
the objective function c⊤x. We call this procedure constraint aggregation. From this process,
we obtain the dual linear program where the multipliers are used as variables. Hence, we refer to
the multipliers as dual variables. Let us outline the procedure of deriving the dual LP with the
above general LP.

Step 1: assign dual variables to each constraint, except sign constraints. We assign a
dual variable/multiplier to each constraint.

a⊤i x ≤ bi (λi ≤ 0), i ∈ ML

a⊤i x = bi (λi free), i ∈ ME

a⊤i x ≥ bi (λi ≥ 0), i ∈ MG

Here, the signs of dual variables should be the same as the corresponding inequality directions. In
the previous example

min 4x1 + x2 + 3x3

s.t. 2x1 + 4x2 = 1

3x1 − x2 + x3 = 4

x1, x2, x3 ≥ 0,
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we have only equality constraints, and therefore, the corresponding dual variables are free variables.
The purpose of imposing the signs this way is to provide a lower bound on the primal objective
when we aggregate the constraints.

Step 2: aggregate the constraints via the dual variables. We first multiply each constraint
by the corresponding dual variable.

λia
⊤
i x ≥ biλi, i ∈ ML

λia
⊤
i x = biλi, i ∈ ME

λia
⊤
i x ≥ biλi, i ∈ MG

By the proper choice of the signs of dual variables, the resulting inequalities after multiplying
constraints by dual variables all have the same sign.

Then we sum up the resulting inequalities/equalities.∑
i∈ML

biλi +
∑
i∈ME

biλi +
∑
i∈MG

biλi ≤
∑
i∈ML

λia
⊤
i x+

∑
i∈ME

λia
⊤
i x+

∑
i∈MG

λia
⊤
i x

=

 ∑
i∈ML

λiai +
∑
i∈ME

λiai +
∑
i∈MG

λiai

⊤

x.

Let b be the right-hand side vector that consists of bi for i ∈ ML ∪ ME ∪ MG, and let λ be the
corresponding vector of dual variables. Then∑

i∈ML

biλi +
∑
i∈ME

biλi +
∑
i∈MG

biλi = b⊤λ.

Moreover, let A be the constraint matrix whose rows are a⊤i for i ∈ ML ∪ME ∪MG. Then∑
i∈ML

λiai +
∑
i∈ME

λiai +
∑
i∈MG

λiai = A⊤λ.

Therefore, the resulting inequality is equivalent to

b⊤λ ≤ (A⊤λ)⊤x = λ⊤Ax.

Step 3: match with the primal objective vector. We have b⊤λ ≤ (A⊤λ)⊤x. Here, the
right-hand side is a linear function in x, and we want to use it to lower bound the primal objective
c⊤x. Basically, we want that

(A⊤λ)⊤x ≤ c⊤x.

Note that the jth component of A⊤λ is ã⊤j λ where ãj is the jth column of A. Then

(A⊤λ)⊤x =
∑
j∈[d]

(ã⊤j λ)xj =
∑
j∈DL

(ã⊤j λ)xj +
∑
j∈DF

(ã⊤j λ)xj +
∑
j∈DG

(ã⊤j λ)xj .

Recall that xj ≤ 0 for j ∈ DL, xj is free for j ∈ DF , and xj ≥ 0 for j ∈ DG. Hence, if

ã⊤j λ ≥ cj , j ∈ DL

ã⊤j λ = cj , j ∈ DF

ã⊤j λ ≤ cj , j ∈ DG,
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then it follows that

(A⊤λ)⊤x =
∑
j∈DL

(ã⊤j λ)xj +
∑
j∈DF

(ã⊤j λ)xj +
∑
j∈DG

(ã⊤j λ)xj .

≤
∑
j∈DL

cjxj +
∑
j∈DF

cjxj +
∑
j∈DG

cjxj

= c⊤x.

Step 4: obtain the dual linear program. To summarize what we derived, we obtained b⊤λ ≤
(A⊤λ)⊤x ≤ c⊤x when λ satisfies certain conditions. Here, b⊤λ would be a lower bound on c⊤x.
Then by maximizing the value of b⊤λ over all λ’s satisfying the conditions, we derive the best
possible lower bound with this procedure. Then we obtain the dual linear program as follows.

max
∑
i∈ML

biλi +
∑
i∈ME

biλi +
∑
i∈MG

biλi

s.t. λi ≤ 0, i ∈ ML

λi free, i ∈ ME

λi ≥ 0, i ∈ MG

ã⊤j λ ≥ cj , j ∈ DL

ã⊤j λ = cj , j ∈ DF

ã⊤j λ ≤ cj , j ∈ DG.

Let us compare the dual linear program and the primal linear program. Note that a constraint
of the primal corresponds to a variable in the dual. A variable in the primal corresponds to a
constraint in the dual.

Example 9.1. The dual of

min 2x1 + 3x2

s.t. 7x1 + 4x2 ≤ 1

5x1 + 9x2 = 3

x1 ≥ 0, x2 ≤ 0

is given by

max λ1 + 3λ2

s.t. 7λ1 + 5λ2 ≤ 2

4λ1 + 9λ2 ≥ 3

λ1 ≤ 0, λ2 free.

Example 9.2. The dual of

min 2x1 + 3x2

s.t. 7x1 + 4x2 ≥ 1

5x1 + 9x2 ≤ 3

x1 ≤ 0, x2 ≤ 0
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is given by

max λ1 + 3λ2

s.t. 7λ1 + 5λ2 ≥ 2

4λ1 + 9λ2 ≥ 3

λ1 ≥ 0, λ2 ≤ 0.

What if the primal LP is a maximization problem? There are two options.

1. We turn the LP into a minimization problem. When the objective is to maximize c⊤x, it is
equivalent to minimize −c⊤x. Then we use the result for deriving the dual LP of a minimizing
linear program.

2. We may repeat the process of deriving the dual LP of a maximizing linear program.

Example 9.3. Let us take the first approach to derive the dual of

max 2x1 + 3x2

s.t. 7x1 + 4x2 ≤ 1

5x1 + 9x2 ≤ 3

x1 ≥ 0, x2 ≥ 0.

This LP is equivalent to

(−1) × min − 2x1 − 3x2

s.t. 7x1 + 4x2 ≤ 1

5x1 + 9x2 ≤ 3

x1 ≥ 0, x2 ≥ 0.

The dual of the minimizing program is given by

max λ1 + 3λ2

s.t. 7λ1 + 5λ2 ≤ −2

4λ1 + 7λ2 ≤ −3

λ1 ≤ 0, λ2 ≤ 0.

Then the dual LP of the first linear program is given by multiplying this LP by (−1):

min − λ1 − 3λ2

s.t. 7λ1 + 5λ2 ≤ −2

4λ1 + 7λ2 ≤ −3

λ1 ≤ 0, λ2 ≤ 0.

Replacing λ1 by −λ1 and λ2 by −λ2, we get

min λ1 + 3λ2

s.t. 7λ1 + 5λ2 ≥ 2

4λ1 + 7λ2 ≥ 3

λ1 ≥ 0, λ2 ≥ 0.
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3 Deriving the dual linear program in matrix form

Let us consider the following linear program

p∗ = min c⊤x

s.t. Ax ≥ b.

Let us derive the dual linear program of this. Although the constraints are written in matrix form,
we apply the same approach.

1. In this linear program, we take λ ∈ Rm with λ ≥ 0 where m is the number of rows in A.

2. Multiplying the system by λ, it follows that

b⊤λ ≤ λ⊤Ax = (A⊤λ)⊤x.

3. Note that x variables are free variables. Then we impose that

c = A⊤λ.

This implies that
c⊤x = (A⊤λ)⊤x ≥ b⊤λ.

4. Then the dual linear program is given by

d∗ = max b⊤λ

s.t. A⊤λ = c

λ ≥ 0

Let us consider the following linear program in standard form.

p∗ = min c⊤x

s.t. Ax = b

x ≥ 0.

Let us derive the dual linear program of this.

1. We take free dual variables λ ∈ Rm where m is the number of rows in A.

2. Multiplying the system by λ, it follows that

b⊤λ = λ⊤Ax = (A⊤λ)⊤x.

3. Note that x ≥ 0, so we impose that
c ≥ A⊤λ.

This implies that
c⊤x ≥ (A⊤λ)⊤x = b⊤λ.

4. Then the dual linear program is given by

d∗ = max b⊤λ

s.t. A⊤λ ≤ c.

5



4 Linear programming duality

Let the primal linear program is a minimizing program. Then the dual linear program is a maxi-
mizing program.

Theorem 9.4 (Weak duality). Let p∗ and d∗ be the primal and dual optimal values. Then

p∗ ≥ d∗.

Consequently, the following statements hold.

• If the primal LP is unbounded, then p∗ = d∗ = −∞, and therefore, the dual LP is infeasible.

• If the dual LP is unbounded, then p∗ = d∗ = ∞, and therefore, the primal LP is infeasible.

Moreover, for any x feasible to the primal LP and any λ feasible to the dual LP, we have

c⊤x ≥ b⊤λ.

In fact, it is possible that both primal and dual are infeasible.

Example 9.5. Note that the linear program

min x1 + 2x2

s.t. x1 + x2 = 1

x1 + x2 = 2

has its dual LP given by

max λ1 + 2λ2

s.t. λ1 + λ2 = 1

λ1 + λ2 = 2.

In fact, these two linear programs are identical and infeasible.

Theorem 9.6 (Strong duality). Let p∗ and d∗ be the primal and dual optimal values. If any of

• both primal and dual are feasible,

• primal has a finite optimal value,

• dual has a finite optimal value

holds, then we have
p∗ = d∗.
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