1 Outline

In this lecture, we cover

- simplex method technical details,
- upper and lower bounds on a linear program.

2 Simplex method phase I technical details

Recall that the two-phase simplex method starts with the step of finding a feasible dictionary. This step is essentially checking the feasibility of the linear program.

2.1 Inequality constraints

Assume that the constraints are given by

$$
A x \leq b, \quad x \geq 0 .
$$

Then adding slack variables s, we obtain an equivalent system

$$
\begin{aligned}
& A x+s=\left[\begin{array}{c}
a_{1}^{\top} x+s_{1} \\
\vdots \\
a_{m}^{\top} x+s_{m}
\end{array}\right]=b \\
& x \geq 0, s \geq 0
\end{aligned}
$$

This gives rise to the initial dictionary

$$
\underbrace{\left[\begin{array}{c}
s_{1} \\
\vdots \\
s_{m}
\end{array}\right]}_{s}=\underbrace{\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right]}_{b}+\underbrace{\left[\begin{array}{c}
-a_{1}^{\top} x \\
\vdots \\
-a_{m}^{\top} x
\end{array}\right]}_{-A x} .
$$

If the components of b are all nonnegative, then it is a feasible dictionary. If not,

$$
b_{\text {min }}=\min _{i \in[m]} b_{i}
$$

is negative. In this case, we consider

$$
A x-t \mathbf{1} \leq b, \quad x \geq 0, t \geq 0
$$

where $\mathbf{1}$ the vector of all ones. In conrast to the original system, this new system with variable t is always feasible. In fact,

$$
(x, t)=\left(0,-b_{\min }\right)
$$

is a feasible solution. Moreover, consider

$$
\begin{array}{cl}
\min & t \\
\text { s.t. } & A x-t \mathbf{1} \leq b \\
& x \geq 0, t \geq 0
\end{array}
$$

which we refer to as the Phase I LP. We know that system $A x \leq b, x \geq 0$ is feasible if and only if the Phase I LP has optimal value 0 . That is because the optimal value being 0 means that there exists a solution $(x, t)=(\bar{x}, 0)$ that satisfies $A \bar{x}-0 \mathbf{1}=A \bar{x} \leq b$ and $\bar{x} \geq 0$.

To solve the Phase I LP, we obtain its standard form, given by

$$
\begin{aligned}
& A x-t \mathbf{1}+s=\left[\begin{array}{c}
a_{1}^{\top} x-t+s_{1} \\
\vdots \\
a_{m}^{\top} x-t+s_{m}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right] \\
& x \geq 0, t \geq 0, s \geq 0 .
\end{aligned}
$$

Let us get the initial dictionary of this. For simpler presentation, let us assume that b_{1} is the smallest among the components of b. Subtracting the first row from the other rows, we obtain

$$
\left[\begin{array}{c}
a_{1}^{\top} x-t+s_{1} \\
\left(a_{2}-a_{1}\right)^{\top} x+s_{2}-s_{1} \\
\vdots \\
\left(a_{m}-a_{1}\right)^{\top} x+s_{m}-s_{1}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2}-b_{1} \\
\vdots \\
b_{m}-b_{1}
\end{array}\right] .
$$

Moving the variables accordingly, we get

$$
\left[\begin{array}{c}
t \\
s_{2} \\
\vdots \\
s_{m}
\end{array}\right]=\left[\begin{array}{c}
-b_{1} \\
b_{2}-b_{1} \\
\vdots \\
b_{m}-b_{1}
\end{array}\right]+\left[\begin{array}{c}
a_{1}^{\top} x+s_{1} \\
-\left(a_{2}-a_{1}\right)^{\top} x+s_{1} \\
\vdots \\
-\left(a_{m}-a_{1}\right)^{\top} x+s_{1}
\end{array}\right] .
$$

Here, this dictionary is feasible because

$$
b_{i}-b_{1}=b_{i}-\min \left\{b_{j}: j \in[m]\right\} \geq 0
$$

for all $i \in[m]$. Then we may proceed the simplex algorithm to solve the Phase I LP.

2.2 Equality constraints

Now assume that the constraints of a linear program are given by

$$
A x=b, \quad x \geq 0 .
$$

In this case, what would be the right form for the Phase I LP? We may apply the same idea! We consider

$$
\begin{array}{ll}
\min & t+\sum_{i=1}^{m} s_{i} \\
\text { s.t. } & A x-t \mathbf{1}+s=b \\
& x \geq 0, s \geq 0, t \geq 0 .
\end{array}
$$

where $\mathbf{1}$ is the veector of all ones. Here s is the vector of m variables and t is a single variable. This is the Phase I LP for the equality constrained case.

If all components of b are nonnegative,

$$
(x, t, s)=(0,0, b)
$$

is a feasible solution! Moreover,

$$
\left[\begin{array}{c}
s_{1} \\
\vdots \\
s_{m}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right]+\left[\begin{array}{c}
-a_{1}^{\top} x+t \\
\vdots \\
-a_{m}^{\top} x+t
\end{array}\right]
$$

is a feasible dictionary.
Next, consider the case when b has some negative component. WIthout loss of generality, we may assume that b_{1} has the smallest value among the components of b. In this case, we use t instead of s_{1} for a basic variable. Then we obtain from $A x-t \mathbf{1}+s=b$ that

$$
\left[\begin{array}{c}
t \\
s_{2} \\
\vdots \\
s_{m}
\end{array}\right]=\left[\begin{array}{c}
-b_{1} \\
b_{2}-b_{1} \\
\vdots \\
b_{m}-b_{1}
\end{array}\right]+\left[\begin{array}{c}
a_{1}^{\top} x+s_{1} \\
-\left(a_{2}-a_{1}\right)^{\top} x+s_{1} \\
\vdots \\
-\left(a_{m}-a_{1}\right)^{\top} x+s_{1}
\end{array}\right] .
$$

This is a feasible dictionary.
Theorem 8.1. The system $A x=b, x \geq 0$ is feasible if and only if the Phase I LP has optimal value 0 .

Proof. The system $A x=b, x \geq 0$ is feasible if and only if there exists (x, t, s) with $t=0$ and $s=0$ satisfies $A x-t \mathbf{1}+s=b$ with $x \geq 0$, in which case (x, t, s) has objective value 0 .

3 Phase II technical details

In this section, we review the second phase of the simplex algorithm for general linear programs. Consider a linear program in standard form as follows.

$$
\begin{aligned}
\max & z=c^{\top} x \\
\text { s.t. } & A x=b \\
& x \geq 0 .
\end{aligned}
$$

Assume that we are given a feasible dictionary, which is guaranteed after the first phase of the simplex algorithm. Suppose that the vector of variables x has basic variables x_{B} and non-basic variables x_{N}, i.e., we may write x as

$$
x=\left[\begin{array}{l}
x_{B} \\
x_{N}
\end{array}\right] .
$$

Moreover, we decompose the objective coefficient vector c and the constraint matrix A with respect to the basic and non-basic variables. Basically,

$$
c=\left[\begin{array}{l}
c_{B} \\
c_{N}
\end{array}\right], \quad A=\left[\begin{array}{ll}
B & N
\end{array}\right] .
$$

Assumption 1. To set x_{B} as basic variables, the corresponding constraint matrix B should be nonsingular, i.e., B^{-1} exists.

Then the linear program in standard form can be rewritten as

$$
\begin{aligned}
\max & z=c_{B}^{\top} x_{B}+c_{N}^{\top} x_{N} \\
\text { s.t. } & B x_{B}+N x_{N}=b \\
& x_{B} \geq 0, x_{N} \geq 0 .
\end{aligned}
$$

To obtain the feasible dictionary with respect to the basic variables x_{B}, we need to apply the required row operations. In fact, applying the required row operations is equivalent to multiplying both sides by B^{-1}. It follows from $B x_{B}+N x_{N}=b$ that

$$
x_{B}=B^{-1} b-B^{-1} N x_{N} .
$$

Assumption 2. For the basic variables x_{B} to give a feasible dictionary, all components of $B^{-1} b$ are nonnegative.

Next we need to eliminate the basic variables x_{B} from the objective row. To do so, we use

$$
c_{B}^{\top} x_{B}=c_{B}^{\top} B^{-1} b-c_{B}^{\top} B^{-1} N x_{N} .
$$

We plug in this to the objective row to eliminate x_{B}. Note that

$$
\begin{aligned}
z & =c_{B}^{\top} x_{B}+c_{N}^{\top} x_{N} \\
& =c_{B}^{\top} B^{-1} b-c_{B}^{\top} B^{-1} N x_{N}+c_{N}^{\top} x_{N} \\
& =c_{B}^{\top} B^{-1} b+\left(c_{N}-N^{\top}\left(B^{-1}\right)^{\top} c_{B}\right)^{\top} x_{N} .
\end{aligned}
$$

Consequently, the dictionary is given by

$$
\begin{aligned}
z & =c_{B}^{\top} B^{-1} b & +\left(c_{N}-N^{\top}\left(B^{-1}\right)^{\top} c_{B}\right)^{\top} x_{N} \\
x_{B} & =B^{-1} b & -B^{-1} N x_{N}
\end{aligned}
$$

- The corresponding solution is given by

$$
\left(x_{B}, x_{N}\right)=\left(B^{-1} b, 0\right) .
$$

- The corresponding objective value is

$$
z=c_{B}^{\top} B^{-1} b
$$

- We call the matrix B or the columns corresponding to the basic variables x_{B} basis.
- The objective coefficients $c_{N}-N^{\top}\left(B^{-1}\right)^{\top} c_{B}$ are called the reduced costs.
- For maximization, the current dictionary is optimal if the reduced costs are all non-positive.

4 Upper and lower bounds for a linear program

Let us consider the following linear program with three variables.

$$
\begin{array}{cl}
p^{*}:=\min & 4 x_{1}+x_{2}+3 x_{3} \\
\text { s.t. } & 2 x_{1}+4 x_{2}=1 \\
& 3 x_{1}-x_{2}+x_{3}=4 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Let us derive upper and lower bounds on p^{*}.

4.1 Upper bound

As this is a minimization problem, we just find a feasible solution, and it objective value would be an upper bound on p^{*}. For example,

$$
\left(x_{1}, x_{2}, x_{3}\right)=\left(0, \frac{1}{4}, \frac{17}{4}\right)
$$

is a feasible solution whose objective value is

$$
4 \times 0+\frac{1}{4}+3 \times \frac{17}{4}=13
$$

Therefore, we deduce that

$$
p^{*} \leq 13 .
$$

For any feasible solution $\left(x_{1}, x_{2}, x_{3}\right)=\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right)$,

$$
p^{*} \leq 4 \bar{x}_{1}+\bar{x}_{2}+3 \bar{x}_{3} .
$$

4.2 Lower bound

What about lower bounds? Let us multiply $2 x_{1}+4 x_{2}=1$ by λ_{1} and $3 x_{1}-x_{2}+x_{3}=4$ by λ_{2}. Note that

$$
\begin{aligned}
\lambda_{1}+4 \lambda_{2} & =\lambda_{1}\left(2 x_{1}+4 x_{2}\right)+\lambda_{2}\left(3 x_{1}-x_{2}+x_{3}\right) \\
& =\left(2 \lambda_{1}+3 \lambda_{2}\right) x_{1}+\left(4 \lambda_{1}-\lambda_{2}\right) x_{2}+\lambda_{2} x_{3}
\end{aligned}
$$

If (x_{1}, x_{2}, x_{3}) is feasible, then x_{1}, x_{2}, x_{3} are all nonnegative. What this means is that if λ_{1} and λ_{2} satisfy

$$
\begin{aligned}
2 \lambda_{1}+3 \lambda_{2} & \leq 4, \\
4 \lambda_{1}-\lambda_{2} & \leq 1, \\
\lambda_{2} & \leq 3,
\end{aligned}
$$

then

$$
\begin{aligned}
\left(2 \lambda_{1}+3 \lambda_{2}\right) x_{1} & \leq 4 x_{1}, \\
\left(4 \lambda_{1}-\lambda_{2}\right) x_{2} & \leq x_{2}, \\
\lambda_{2} x_{3} & \leq 3 x_{3} .
\end{aligned}
$$

Summing these up, we obtain

$$
\begin{aligned}
4 x_{1}+x_{2}+3 x_{3} & \geq\left(2 \lambda_{1}+3 \lambda_{2}\right) x_{1}+\left(4 \lambda_{1}-\lambda_{2}\right) x_{2}+\lambda_{2} x_{3} \\
& =\lambda_{1}+4 \lambda_{2} .
\end{aligned}
$$

Therefore, $\lambda_{1}+4 \lambda_{2}$ for any $\left(\lambda_{1}, \lambda_{2}\right)$ satisfying

$$
2 \lambda_{1}+3 \lambda_{2} \leq 4, \quad 4 \lambda_{1}-\lambda_{2} \leq 1, \quad \lambda_{2} \leq 3
$$

is a lower bound on p^{*}.

- Choosing $\left(\lambda_{1}, \lambda_{2}\right)=(1 / 4,0), \lambda_{1}+4 \lambda_{2}=1 / 4$ is a lower bound.
- Choosing $\left(\lambda_{1}, \lambda_{2}\right)=(0,4 / 3), \lambda_{1}+4 \lambda_{2}=3$ is a lower bound.

What is the best lower bound can we obtain from this procedure? Let us compute the maximum value of $\lambda_{1}+4 \lambda_{2}$ over all (λ_{1}, λ_{2}) satisfying the inequalities!

$$
\begin{aligned}
d^{*}:=\max & \lambda_{1}+4 \lambda_{2} \\
\text { s.t. } & 2 \lambda_{1}+3 \lambda_{2} \leq 4, \\
& 4 \lambda_{1}-\lambda_{2} \leq 1 \\
& \lambda_{2} \leq 3
\end{aligned}
$$

In fact, this is also a linear program. We call this the dual linear program (LP). We refer to the original linear program as the primal LP. Solving the dual LP, we get an optimal solution

$$
\left(\lambda_{1}, \lambda_{2}\right)=\left(-\frac{5}{2}, 3\right),
$$

in which case

$$
d^{*}=\frac{19}{2}
$$

This provides a lower bound

$$
d^{*}=\frac{19}{2} \leq p^{*}
$$

It turns out that this lower bound is in fact the best possible bound we can get. Note that

$$
\left(x_{1}, x_{2}, x_{3}\right)=\left(\frac{1}{2}, 0, \frac{5}{2}\right)
$$

is a feasible solution to the primal LP, and its objective value is precisely $19 / 2$. This proves that the solution is optimal to the primal LP, and moreover,

$$
d^{*}=\frac{19}{2}=p^{*} .
$$

