1 Outline

In this lecture, we cover

- the two-phase simplex algorithm,
- recognizing infeasible and unbounded linear programs.

2 Two-phase simplex algorithm

In the last lecture, we applied the simplex method to solve the following linear program with two variables.

$$
\begin{aligned}
\max & z=5 x+4 y \\
\text { s.t. } & 2 x+3 y \leq 150, \\
& 2 x+y \leq 70, \\
& x, y \geq 0 .
\end{aligned}
$$

This linear program can be converted into standard form, given by

$$
\begin{array}{cl}
\max _{x, y} & z=5 x+4 y \\
\text { s.t. } & 2 x+3 y+s_{1}=150, \\
& 2 x+y+s_{2}=70, \\
& x, y, s_{1}, s_{2} \geq 0 .
\end{array}
$$

Recall that the slack variables s_{1} and s_{1} naturally give rise to the initial dictionary as follows.

$$
\begin{aligned}
z & = & +5 x & +4 y, \\
s_{1} & =150 & -2 x & -3 y, \\
s_{2} & =70 & -2 x & -y .
\end{aligned}
$$

Then we obtain the initial solution $\left(x, y, s_{1}, s_{2}\right)=(0,0,150,70)$. We say that this is a feasible dictionary.
Note that using the slack variables for the initial dictionary was feasible because the right-hand side values, 150 and 70 , are all nonnegative. What about the following linear program?

$$
\begin{aligned}
\max & z=x+2 y \\
\text { s.t. } & 2 x+3 y \leq 150, \\
& -x+y \leq-25, \\
& x, y \geq 0
\end{aligned}
$$

As before, we use slack variables s_{1} and s_{2} to transform the inequality constraints into equalities as follows.

$$
\begin{aligned}
\max & z=x+2 y \\
\text { s.t. } & 2 x+3 y+s_{1}=150, \\
& -x+y+s_{2}=-25, \\
& x, y \geq 0,
\end{aligned}
$$

and this gives rise to the following dictionary.

$$
\begin{array}{rlll}
z & = & +x & +2 y, \\
s_{1} & =150 & -2 x & -3 y, \\
s_{2} & =-25 & +x & -y .
\end{array}
$$

Here, if we set $x=y=0$, then $\left(s_{1}, s_{2}\right)$ would be $(150,-25)$, violating the nonnegativity constraint on s_{2}. We say that this is an infeasible dictionary. We cannot proceed the simplex algorithm with an infeasible dictionary.

Motivated by this, the two-phase simplex algorithm proceeds in the phase of finding a feasible dictionary and the solution phase. In the first phase, we check the feasibility of the problem. If the given linear program is feasible, then the first phase ends with a feasible dictionary. If not, we conclude that the linear program is infeasible. The solution phase is the simplex algorithm outlined in the last lecture.

2.1 Phase I: find a feasible disctionary

For the first phase, we consider another linear program to check the feasibility of the original linear program. For our example, we consider

$$
\begin{array}{cl}
\min & t \\
\mathrm{s.t.} & 2 x+3 y-t \leq 150, \\
& -x+y-t \leq-25, \\
& x, y, t \geq 0 .
\end{array}
$$

Theorem 7.1. The linear program is feasible and its optimal value is equal to 0 if and only if the original linear program is feasible.

Proof. We may take a sufficiently large number for t to make the constraints always satisfied. Moreover, the optimal value is 0 if and only if there is a solution (x, y, t) with $t=0$ that satisfies the constraints.

The standard form is given by

$$
\begin{array}{cl}
\min & t \\
\mathrm{s.t.} & 2 x+3 y-t+s_{1}=150 \\
& -x+y-t+s_{2}=-25 \\
& x, y \geq 0
\end{array}
$$

Then the corresponding initial dictionary is given by

$$
\begin{array}{rlllll}
z & = & & & -t, \\
s_{1} & = & 150 & -2 x & -3 y & +t, \\
s_{2} & = & -25 & +x & -y & +t .
\end{array}
$$

Here, we have $-t$ in the objective row because minimizing t is equivalent to maximizing $-t$. Again, this dictionary is infeasible, but we may obtain a feasible dictionary with the new variable t. Variable t becomes basic, while a basic variable with the most negative value becomes non-basic. For the current dictionary, s_{2} has the only variable with a negative value. Before moving t to the left-hand side, we apply row operations to eliminate t from the other rows.

$$
\begin{array}{rlll}
z+s_{2} & =-25 & +x & -y \\
s_{1}-s_{2} & =175 & -3 x & -2 y \\
s_{2} & =-25 & +x & -y
\end{array}+t .
$$

Then we move t to the left-hand side and s_{2} to the right-hand side.

$$
\begin{array}{rllll}
z & =-25 & +x & -y & -s_{2} \\
s_{1} & =175 & -3 x & -2 y & +s_{2} \\
t & =25 & -x & +y & +s_{2}
\end{array}
$$

Next, we note that x has a positive coefficient in the objective row. Then we may increase x up to

$$
\min \left\{\frac{175}{3}, 25\right\}=25
$$

in which case t becomes 0 and becomes non-basic. Equivalently, we move x to the left-hand side and t to the right-hand side. Before this, we apply row operations as follows.

$$
\begin{array}{rllll}
z+t & = \\
s_{1}-3 t & =100 & & -5 y & -2 s_{2} \\
t & =25 \quad-x & +y & +s_{2}
\end{array}
$$

Then we deduce

$$
\begin{array}{rllll}
z & = & & -t \\
s_{1} & = & 100 & +3 t & -5 y \\
x & = & -25 & -t & +y
\end{array}+s_{2} .
$$

As all the coefficients in the objective row are nonpositive, this dictionary is optimal. Moreover, the optimal value is 0 . Therefore, the original linear program is feasible, and the dictionary with basic variables s_{1} and s provides a feasible dictionary. The feasible dictionary is given by

$$
\begin{array}{rll}
s_{1} & =100-5 y & -2 s_{2} \\
x & =25+y & +s_{2}
\end{array}
$$

Note that we are missing the objective row. In fact, the objective z is given by $z=x+2 y$, and we can combine this with the dictionary. As x is a basic variable, we replace x with non-basic variables.

$$
z=\left(25+y+s_{2}\right)+2 y=25+s_{2}+3 y
$$

Then we obtain

$$
\begin{array}{rlll}
z & =25 & +s_{2} & +3 y \\
s_{1} & =100-2 s_{2} & -5 y \\
x & =25+s_{2} & +y
\end{array}
$$

The first feasible dictionary gives rise to the initial solution

$$
(x, y)=(25,0) \quad\left(s_{1}, s_{2}\right)=(100,0)
$$

2.2 Phase II: proceed the simplex method with the feasible dictionary

There are variables with positive coefficients in the objective row from the first feasible dictionary. In particular, y has a strictly positive coefficient. Let us make y basic. Then we may increase y up to 20 , which would make s_{1} non-basic. By applying the required row operations, we obtain

$$
\begin{array}{rlll}
z+0.6 s_{1} & =85 & -0.2 s_{2} & \\
s_{1} & =100 & -2 s_{2} & -5 y, \\
x+0.2 s_{1} & =45 & +0.6 s_{2} &
\end{array}
$$

Moving s_{1} to the right-hand side and y to the left-hand side, we obtain

$$
\begin{aligned}
& z=85-0.2 s_{2} \\
& z=0.6 s_{1} \\
& y=20 \\
& y \\
& x
\end{aligned}=45+0.4 s_{2}-0.0 .2 s_{1}, ~+0.6 s_{2}-0.2 s_{1},
$$

Here, all objective coefficients are negative, and therefore, the currrent solution

$$
(x, y)=(45,20), \quad\left(s_{1}, s_{2}\right)=(0,0)
$$

is optimal.

2.3 Geometry

Note that the initial infeasible dictionary gave solution

$$
(x, y)=(0,0), \quad\left(s_{1}, s_{2}\right)=(150,-25) .
$$

Figure 7.1: Solution from the initial infeasible dictionary

It can be checked from Figure 7.1 that $(x, y)=(0,0)$ is an infeasible solution to the original linear program. Next, after Phase I, we obtained

$$
(x, y)=(25,0) \quad\left(s_{1}, s_{2}\right)=(100,0)
$$

from the first feasible dictionary. The first feasible solution is illustrated in the first figure in Figure 7.2. After this solution, we reached the optimality with solution

$$
(x, y)=(45,20), \quad\left(s_{1}, s_{2}\right)=(0,0) .
$$

Figure 7.2: Solution from the first feasible dictionary and the optimal solution

3 Simplex method for infeasible and unbounded linear programs

3.1 Infeasible case

Next, we determine whether the following linear linear program is feasible or not.

$$
\begin{aligned}
\max & z=x+2 y \\
\text { s.t. } & 2 x+3 y \leq 150 \\
& -x+y \leq-90, \\
& x, y \geq 0
\end{aligned}
$$

As explained in the last section, we can test the feasibility by running Phase I. To do so, we consider

$$
\begin{array}{cl}
\min & -t \\
\text { s.t. } & 2 x+3 y-t \leq 150, \\
& -x+y-t \leq-90, \\
& x, y \geq 0,
\end{array}
$$

which gives rise to the initial dictionary.

$$
\begin{array}{rllll}
z & = & & & -t, \\
s_{1} & = & 150 & -2 x & -3 y \\
s_{2} & = & -90 & +x & -y
\end{array}+t .
$$

Moving t to the left-hand side and s_{2} to the right-hand side, we obtain

$$
\begin{array}{rllll}
z & =-90 & +x & -y & -s_{2} \\
s_{1} & =240 & -3 x & -2 y & +s_{2} \\
t & =90 & -x & +y & +s_{2} .
\end{array}
$$

Next x becomes basic while s_{1} becomes non-basic. Applying row operations,

$$
\begin{array}{rlrl}
z+(1 / 3) s_{1} & =-10 & -(5 / 3) y & -(2 / 3) s_{2} \\
(1 / 3) s_{1} & =80 & -x & -(2 / 3) y \\
t-(1 / 3) s_{1} & =10 & & +(5 / 3) y \\
t(2 / 3) s_{2} \\
t
\end{array}
$$

Then we obtain

$$
\begin{array}{rllll}
z & =-10 & -(1 / 3) s_{1} & -(5 / 3) y & -(2 / 3) s_{2} \\
x & =80 & -(1 / 3) s_{1} & -(2 / 3) y & +(1 / 3) s_{2} \\
t & =10 & +(1 / 3) s_{1} & +(5 / 3) y & +(2 / 3) s_{2} .
\end{array}
$$

Now all the objective coefficients are non-positive. However, the value of t is 10 which is strictly positive. Hence, the linear program is infeasible!

Figure 7.3: Infeasible case

3.2 Unbounded case

Now we consider

$$
\begin{array}{cl}
\max & z=x+y \\
\text { s.t. } & -2 x+y \leq 100, \\
& x-2 y \leq 100, \\
& x, y \geq 0 .
\end{array}
$$

Its standard form is given by

$$
\begin{aligned}
\max & z=x+y \\
\text { s.t. } & -2 x+y+s_{1}=100, \\
& x-2 y+s_{2}=100, \\
& x, y \geq 0 .
\end{aligned}
$$

Then the initial dictionary is given by

$$
\begin{array}{rllll}
z & = & & +x & +y \\
s_{1} & =100 & +2 x & -y \\
s_{2} & =100 & -x & +2 y
\end{array}
$$

Next we make x basic and s_{2} non-basic. Applying row operations,

$$
\begin{array}{rlrl}
z+s_{2} & =100 & & +3 y \\
s_{1}+2 s_{2} & =300 & & +3 y \\
s_{2} & =100 \quad-x & +2 y
\end{array}
$$

Moving s_{2} to the right-hand side and x to the left-hand side, we deduce

$$
\begin{array}{rlll}
z & =100-s_{2} & +3 y \\
s_{1} & =300 & -2 s_{2} & +3 y \\
x & =100 & -s_{2} & +2 y
\end{array}
$$

Now, note that y has a positive objective coefficient. In fact, we may increase y by as much as we want without violating the nonnegativity constraints on the current basic variables! This implies that the linear program is unbounded.

Figure 7.4: Unbounded case

