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1 Outline

In this lecture, we cover

• geometry of linear programming,

• a basic case of the simplex method,

• geometry of the simplex method.

2 Geometry of linear programming

Given a linear inequality a⊤x ≤ b, the set of points satisfying the inequality, given by{
x ∈ Rd : a⊤x ≤ b

}
is called a half-space. The set of points satisfying the inequality at equality, given by{

x ∈ Rd : a⊤x = b
}
,

is called a hyperplane.

Figure 6.1: A half-space (left) and a hyperplane (right)

Definition 6.1. A set C ⊆ Rd is a polyhedron if it is defined by a finite number of linear
inequalities, i.e.

C = {x ∈ Rd : a⊤i x ≤ bi, ∀i ∈ [m]}.

Furthermore, if C is bounded, i.e. there exists some M > 0 such that C ⊆ {x ∈ Rd : −M ≤ xj ≤
M, ∀j ∈ [d]}, then we say that C is a polytope.

By definition, a polyhedron is the intersection of a finite number of half-spaces. Figure 6.2 illustrates
a polyhedron in R2 that is the intersection of three half-spaces.

1



Figure 6.2: Polyhedron defined by three inequalities

Imagine a linear program that consists of only linear inequality constraints. As the number of
constraints is finite, the set of feasible solutions is a polhedron. For example, a two-variable linear
program

max 5x+ 4y

s.t. 2x+ 3y ≤ 150,

2x+ y ≤ 70,

x, y ≥ 0,

has feasible region as in Figure 6.3. The polyhedron in Figure 6.3 is defined by 4 inequalities,

Figure 6.3: Feasible region of the two-variable linear program

2x+ 3y ≤ 150, 2x+ y ≤ 70, x ≥ 0, and y ≥ 0.

Remark 6.2. Remember that the epigraph epi(f) of a linearly representable function f is given
by

epi(f) =
{
(x, t) ∈ Rd × R : ∃y ∈ Rp s.t. Ax+Dy + ht ≤ r

}
Moreover, the epigraph epi(f) is the projection of

P =
{
(x, y, t) ∈ Rd × Rp × R : Ax+Dy + ht ≤ r

}
onto the (x, t)-space. By definition, the set P is a polyhedron, and epi(f) is a projection of P . In
fact, It is known that a projection of a polyhedron is also a polyhedron. This implies that there
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exists a representation of epi(f) in the original (x, t) space.

epi(f) =
{
(x, t) ∈ Rd × R : A′x+ h′t ≤ r′

}
for some A′, h′, r′. Hence, if f is linearly representable, then its epigraph is a polyhedron.

Example 6.3. Remember that when f(x) = ∥x∥1,

epi(f) =

(x, t) ∈ Rd × R : ∃s ∈ Rd s.t. − sj ≤ xj ≤ sj , ∀j ∈ [d],

d∑
j=1

sj ≤ t

 .

It is known that the description of epi(f) in the (x, t)-space is given by

epi(f) =
{
(x, t) ∈ Rd × R : π⊤x ≤ t, ∀π ∈ {−1, 1}d

}
.

Note that epi(f) is not bounded because we can set the value of t for a point (x, t) ∈ epi(f)
arbitrarily large. This means that epi(f) is a polyhedron while it is not a polytope.

3 Simplex algorithm

The simplex method due to George B. Dantzig is a practical algorithm for solving linear program-
ming. The modern optimization software tools for linear and integer programming all implement
and utilize the simplex method. We briefly touch upon the algorithm in this lecture.

Let us consider the two-variable linear program as follows. For running the simplex algorithm, it
is common to introduce an extra variable z to represent the objective function.

max z = 5x+ 4y

s.t. 2x+ 3y ≤ 150,

2x+ y ≤ 70,

x, y ≥ 0.

Step 1: represent the linear program in standard form. The first step is to write down
the linear program in standard form. To write the two-variable LP in standard form, we use slack
variables s1 and s2 for the constraints 2x+3y ≤ 150 and 2x+y ≤ 70, respectively. Then we obtain

max
x,y

z = 5x+ 4y

s.t. 2x+ 3y + s1 = 150,

2x+ y + s2 = 70,

x, y, s1, s2 ≥ 0.

Step 2: construct the initial dictionary. We keep the slack variables on the left-hand side
and move the others to the right-hand side as follows.

z = +5x +4y,
s1 = 150 −2x −3y,
s2 = 70 −2x −y.
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Here, the initial solution is given by setting the variables on the right-hand side to 0. In that case
the values of the variables on the left-hand side are automatically chosen to satisfy the constraints.
Therefore, the initial solution is given by

(x, y) = (0, 0), (s1, s2) = (150, 70).

Then the corresponding objective value is

z = 5x+ 4y = 0.

For an arbitrary linear program in standard form, we choose m distinct variables where m is the
number of linear equality constraints. We keep these m variables on the left-hand side and the
others on the right-hand side. We call the m variables basic variables and the others non-basic
variables. To separate the basic variables from the non-basic variables, we may need a proper
transformation.

Step 3: choose a better dictionary. Note that we have z = 5x+4y where non-basic variables
are currently set to 0. Note that the coefficients of x and y are strictly positive. This means that
increasing x or y would increase the objective value z. It looks like that the rate of increase is
higher with x than y, because x has a larger objective coefficient. This is the step of

• deciding the non-basic variable to become a new basic variable (choosing the entering vari-
able).

Let us try to increase x while the other non-basic variable, y, remains 0. Consider

s1 = 150 −2x,
s2 = 70 −2x.

We still want the current basic variables to be nonnegative. While keeping both s1 and s2 nonneg-
ative, we may increase x up to

min

{
150

2
,
70

2

}
.

As the value is 35, we may increase x up to 35, in which case s1 becomes 80 while s2 becomes 0.
As the value of s2 is now 0, we may switch the roles of x and s2 and move s2 to the right-hand
side. This is the step of

• deciding the basic variable to become a non-basic variable (choosing the leaving variable).

Before we move x to the left-hand side, we do some matrix row operations to eliminate x from the
rows not containing variable s2. Then we obtain

z + 2.5s2 = 175 +1.5y,
s1 − s2 = 80 −2y,

s2 = 70 −2x −y.

Next we move s2 to the right-hand side and x to the left-hand side.

z = 175 −2.5s2 +1.5y,
s1 = 80 +s2 −2y,
x = 35 −0.5s2 −0.5y.
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Then s1 and x are now basic variables while s2 and y are non-basic variables. Then we obtain a
new solution given by

(x, y) = (35, 0), (s1, s2) = (80, 0).

In this case, the objective value is

z = 175− 2.5s2 + 1.5y = 175.

Step 4: repeat step 3. We have z = 175−2.5s2+1.5y and y is set to 0. Then we may still have
some room for improvement by increasing the value of y. Then while keeping s2 zero, we attempt
to increase y. To decide how much we increase y, consider

s1 = 80 −2y,
x = 35 −0.5y.

While keeping s1 and x nonnegative, we may increase y up to 40. In this case, s1 becomes 0 and
x becomes 15. Then applying the desired row operations,

z + 0.75s1 = 235 −1.75s2
s1 = 80 +s2 −2y,

x− 0.25s1 = 15 −0.75s2

Then moving y to the left-hand side and s1 to the right-hand side, we obtain

z = 235 −1.75s2 −0.75s1
y = 40 +0.5s2 −0.5s1,
x = 15 −0.75s2 +0.25s1

Then we obtain a new solution given by

(x, y) = (15, 40), (s1, s2) = (0, 0).

In this case, the objective value is

z = 235− 1.75s2 − 0.75s1 = 235.

Step 5: obtain an optimal solution. Now, we represent the objective as

z = 35− 1.75s2 − 0.75s1

where the current non-basic variables are s1 and s2. The coefficients of s1 and s2 are both negative.
Then increasing the value of s1 or that of s2 would deteriorate the objective. In fact, this means
that we are currently at an optimal solution!

4 Geometry of the simplex algorithm

Remember that we have taken 3 solutions until we solve the two-variable linear program.

1. (x, y) = (0, 0) and (s1, s2) = (150, 70),

2. (x, y) = (35, 0) and (s1, s2) = (80, 0),

3. (x, y) = (15, 40) and (s1, s2) = (0, 0).
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Let us consider the first solution given by (x, y) = (0, 0) and (s1, s2) = (150, 70). What is the
point of setting x = y = 0 and assigning positive values fo the slack variables s1 and s2? Note
that s1 being positive means 2x+ 3y < 150 and the current point (x, y) is not on the line defined
by 2x + 3y = 150. Similarly, positive s2 means that the point (x, y) is not on the line defined by
2x + y < 70. In fact, (x, y) = (0, 0) satisfies the constraints x ≥ 0 and y ≥ 0 at equality, and the
point is at the intersection of line x = 0 and line y = 0.

Figure 6.4: Illustrating the initial solution

The second solution has (x, y) = (35, 0) and (s1, s2) = (80, 0). Note that the point is on the line
y = 0. Moreover, s1 is still positive, and we have 2x+3y = 70 < 150. Hence, the first slack variable
being strictly positive means that the constraint 2x+ 3y ≤ 150 is not tight. In contrast, the other
slack variable is s2 = 0. Note that 2x+ y = 70, so the second constraint is satisfied at equality.

Figure 6.5: Illustrating the second solution

The third solution has (x, y) = (15, 40) and (s1, s2) = (0, 0). Note that both x and y are strictly
positive, while the slack variables are all 0. We can check that (x, y) = (15, 40) satisfies the both
constraints 2x + 3y ≤ 150 and 2x + y ≤ 70 at equality. In fact the point is at the intersection of
the two hyperplanes 2x+ 3y = 150 and 2x+ y = 70.
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Figure 6.6: Illustrating the third solution
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