
IE 331 OR: Optimization KAIST, Spring 2023
Lecture #5: Standard form LP and History of linear programming March 14, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we cover

• linear programming standard form,

• history of linear programming.

2 Linear programming standard form

Remember that our linear program

min c⊤x

s.t. Ax ≤ b,

x ∈ Rd

(5.1)

has the constraint system Ax ≤ b. When A has m rows, i.e. A is an m× d matrix, Ax is a vector
of dimension m. As A has m rows, b also has dimension m. Here, the inequality Ax ≤ b represents
that the ith entry of Ax is less than or equal to the ith entry of b for every i ∈ [m]. In general,
given two vectors b1 = (b11, . . . , b

1
m), b2 = (b21, . . . , b

2
m) ∈ Rm, b1 ≤ b2 means that b1i ≤ b2i for every

i ∈ [m]. Then, what is the ith entry of Ax? It is equal to a⊤i x where a⊤i is the ith row of the matrix
A. Therefore, comparing the ith entry of Ax and that of b gives us the inequality a⊤i x ≤ bi. Recall
that Ax ≤ b can be rewritten as

Ax =


a⊤1
a⊤2
...
a⊤m

x =


a⊤1 x
a⊤2 x
...

a⊤mx

 ≤


b1
b2
...
bm

 .

We say that Ax ≤ b is a system of linear inequalities. In fact, we may have constraints of the
form

Ax ≥ b or Ax = b.

Hence, we may have a linear program of the following form

min c⊤x

s.t. A1x ≤ b1,

A2x ≥ b2,

A3x = b3,

x ∈ Rd

(5.2)

where A1x ≤ b1, A2x ≥ b2, and A3x = b3 have m1, m2, and m3 constraints, respectively. Here, we
may call Ax = b a system of linear equalities. We say that a constraint in a system of the form
A1x ≤ b1 or A2x ≥ b2 is (linear) inequality constraint and that a constraint in a system of the
form A3x = b3 a (linear) equality constraint.

1



2.1 Equality constraints to inequality constraints

In fact, we may convert (5.2) to a linear program of the form (5.1) that consists of inequality
constraints only. Note that A′x = b′ holds if and only if

A′x ≥ b′ and A′x ≤ b′.

Hence, (5.2) is equivalent to

min c⊤x

s.t. A1x ≤ b1,

A3x ≤ b3,

A2x ≥ b2,

A3x ≥ b3,

x ∈ Rd

Here, in the last two sets of linear inequality constraints, the inequality direction is reversed. To
take this into account, we observe that A′x ≥ b′ is equivalent to

−A′x ≤ −b′

obtained after multiplying A′x ≥ b′ by −1 on both sides. Then we deduce that

min c⊤x

s.t. A1x ≤ b1,

A3x ≤ b3,

−A2x ≤ b2,

−A3x ≤ b3,

x ∈ Rd

(5.3)

is an equivalent linear program of (5.2). Here, taking

A =


A1

−A2

A3

−A3

 and b =


b1

−b2

b3

−b3

 ,

(5.3) reduces to (5.1).

2.2 Inequality constraints to equality constraints

Given a system of linear inequality constraints Ax ≤ b, we can convert it to a set of linear equality
constraints.

Lemma 5.1. Let ai ∈ Rd and bi ∈ R. Then a⊤i x ≤ bi if and only if

∃si ∈ R such that si ≥ 0 and a⊤i x+ si = bi.

2



Proof. First, assume that a⊤i x ≤ bi. Then

a⊤i x+ (bi − a⊤i x) = bi.

Hence, we may set si = bi − a⊤i x. Then si ≥ 0 because a⊤i x ≤ bi, and moreover, a⊤i x+ si = bi by
definition. Next assume that there exists some si ≥ 0 such that a⊤i x+ si = bi. Then

a⊤i x = bi − si ≤ bi,

and therefore, a⊤i x ≤ bi holds.

By this lemma, it follows that

Ax ≤ b ↔ ∃s ∈ Rm such that s ≥ 0 and Ax+ s = b.

Therefore, the optimization problem (5.1) is equivalent to

min c⊤x

s.t. Ax+ s = b,

s ≥ 0,

x ∈ Rd, s ∈ Rm.

Hence, subject to adding some nonnegativity constraints, we can convert inequality constraints
into equality constraints. Similarly, we can argue that

Ax ≥ b ↔ ∃s ∈ Rm such that s ≥ 0 and Ax− s = b.

2.3 Free variables to nonnegative variables

In the optimization problem (5.1), the variables x may have some negative components unless the
system Ax ≤ b contains nonnegativity constraints x ≥ 0. In that case, we say that the variables x
are free variables. In fact, we may come up with an equivalent optimization problem where all
variables are restricted to be nonnegative.

Lemma 5.2. Note that xj ∈ R if and only if

∃x+j , x
−
j such that x+j , x

−
j ≥ 0 and xj = x+j − x−j .

Proof. If xj ≥ 0, then we set x+j = xj and x−j = 0. If xj < 0, then we set x+j = 0 and x−j = −xj .

This lemma implies that (5.1) is equivalent to

min c⊤x

s.t. Ax ≤ b,

x = x+ − x−,

x+, x− ≥ 0,

x, x+, x− ∈ Rd

which is equivalent to

min c⊤x+ − c⊤x−

s.t. Ax+ −Ax− ≤ b,

x+, x− ≥ 0,

x+, x− ∈ Rd.

3



2.4 Standard form

The following is a linear program in standard form

min c⊤x

s.t. Ax = b,

x ≥ 0,

x ∈ Rd.

(5.4)

A linear program in standard form consists of linear equality constraints and variables that are
nonnegative. Remember that the linear program (5.1) has linear inequality constraints and the
variables are not necessarily nonnegative. We will see that we can convert (5.1) into a linear
program in standard form. In fact, we will show that the linear program (5.2) can be equivalently
written in standard form.

We will combine the idea of adding slack variables to convert inequality constraints to equality
constraints and the technique of replacing each free variable by the difference of two nonnegative
variables.

Note that in (5.2), the system of linear inequalities A1x ≤ b1 is equivalent to

∃s1 ∈ Rm1 such that s1 ≥ 0 and A1x+ s1 = b1.

Moreover, the system of linear inequalities A2x ≥ b2 is equivalent to

∃s2 ∈ Rm2 such that s2 ≥ 0 and A2x− s2 = b2.

Therefore, (5.2) can be rewritten as

min c⊤x

s.t. A1x+ s1 = b1,

A2x− s2 = b2,

A3x = b3,

s1 ≥ 0, s2 ≥ 0,

x ∈ Rd, s1 ∈ Rm1 , s2 ∈ Rm2 .

(5.5)

Here, variables s1 and s2 are nonnegative, but x are free variables. Then, we can replace x by
x = x+ − x− where x+, x− ∈ Rd and x+, x− ≥ 0. As a result,

min c⊤x+ − c⊤x−

s.t. A1x+ −A1x− + s1 = b1,

A2x+ −A2x− − s2 = b2,

A3x+ −A3x− = b3,

x+ ≥ 0, x− ≥ 0, s1 ≥ 0, s2 ≥ 0,

x+, x− ∈ Rd, s1 ∈ Rm1 , s2 ∈ Rm2 .

(5.6)

4



Now (5.6) is in standard form. We may express (5.6) in matrix form as follows.

min
[
c⊤ −c⊤ 0⊤ 0⊤

] 
x+

x−

s1

s2



s.t.

A1 −A1 Im1 0
A2 −A2 0 −Im2

A3 −A3 0 0



x+

x−

s1

s2

 =

b1b2
b3


x+ ≥ 0, x− ≥ 0, s1 ≥ 0, s2 ≥ 0,

x+, x− ∈ Rd, s1 ∈ Rm1 , s2 ∈ Rm2

(5.7)

where Im1 is the m1 ×m1 identity matrix and Im2 is the m2 ×m2 identity matrix.

3 History of linear programming

Linear programming was first devised by Kantorovich in 1939 [Kan39]. Then LP was used to
model problems in military operations research duing World War II, and during that time, Dantzig
was part of Project SCOOP (Scientific Computation of Optimum Programs) arranged for Pen-
tagon [CET16]. Dantzig developed the famous “Simplex method” for solving linear programs1.
The following quote is from his note on the method written in 1985 [Dan85].

Origins of the Simplex Method, Summer 1947

The first idea that would occur to anyone as a technique for solving a linear program,
aside from the obvious one of moving through the interior of the convex set, is that
of moving from one vertex to the next along edges of the polyhedral set. I discarded
this idea immediately as impractical in higher dimensional spaces. It seemed intuitively
obvious that there would be far too many vertices and edges to wander over in the
general case for such a method to be efficient.

When Hurwicz came to visit me at the Pentagon in the summer of 1947,
I told him how I had discarded this vertex-edge approach as intuitively
inefficient for solving LP. I suggested Instead that we study the problem in
the geometry of columns rather than the usual one of the rows – column
geometry incidently was the one I had used in my Ph.D. thesis on the
Neyman-Pearson Lemma. We dubbed the new method “climbing the bean
pole.” It looked to me efficient.

I felt sufficiently confident in this special case of what later became known as the simplex
method that I proceeded to modify it so that it would work for linear programs without
a convexifying row. I also developed a variant for getting a starting feasible solution
called Phase I. It was then that I discovered that the method was really the previously
discarded vertex-edge procedure in disguise (except for an added criterion for selecting
the edge on which to move). Apparently, in one geometry the simplex method
looks efficient while in another it appeared to be very inefficient! Thus the
simplex method was born in August 1947.

1I was not able to find a specific document announcing the result in 1947.

5



The simplex method works really well in practice! However, Klee and Minty found a pathological
instance for the simplex method, requiring exponential time to solve if the method is used [KM72].
Later, Khachiyan announced in 1979 that he proved that the Ellipsoid method, proposed by Naum
Z. Shor [Sho77] (also Yudin and Nemirovski [YN76]), solves linear programming in (weakly) polyno-
mial time! [Kha79], and the full proof was published in 1980 [Kha80]. Although this result is indeed
a breakthrough in theory, it is a general perception that the method is not as practical. Later,
Karmarkar proposed an interior-point algorithm, which is much faster than the ellipsoid method
and is proved to run in polynomial time [Kar84]. There have been far greater improvements in
linear programming, both in practice and theory, and it is still one of the central research topics in
optimization.

The following is a list of recent progress on fast algorithms for linear programming.

• (Khachiyan, 1980 [Kha80]) O(n6) time ellipsoid method.

• (Vaidya, FOCS1989 [Vai89]) O(n2.5) time implementation of Karmarkar’s method.

• (Cohen, Lee and Song, STOC2019 [CLS19]) O∗(nω + n2.5−α/2 + n2+1/6) time.

• (Jiang, Song, Weinstein, and Zhang, STOC2021 [JSWZ21]) O∗(nω+n2.5−α/2+n2+1/18) time.

Here, n is the number of variables, O∗ hides no(1) factors, ω is the exponent of matrix multiplication,
and α is the dual exponent of matrix multiplication. Currently, there exist algorithms that achieve
ω ∼ 2.38 and α ∼ 0.31, and it is believed that ω ≃ 2 and α ≃ 1.

References

[CET16] Richard W. Cottle, B. Curtis Eaves, and Mukund N. Thapa. Dantzig, George B. (1914–
2005), pages 1–14. Palgrave Macmillan UK, London, 2016. 3

[CLS19] Michael B. Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current
matrix multiplication time. In Proceedings of the 51st Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2019, page 938–942, New York, NY, USA, 2019.
Association for Computing Machinery. 3

[Dan85] George B. Dantzig. Impact of limeiar programing on computfer dvelopment. Technical
Report 85-7, Department of Operations Research, Stanford University, June 1985. 3

[JSWZ21] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. A faster algorithm for
solving general lps. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2021, page 823–832, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. 3

[Kan39] Leonid V. Kantorovich. The mathematical method of production planning and organi-
zation. Management Science, 6:363–422, 1939. 3

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings
of the Sixteenth Annual ACM Symposium on Theory of Computing, STOC ’84, page
302–311, New York, NY, USA, 1984. Association for Computing Machinery. 3

6



[Kha79] Leonid.G. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademii
Nauk SSSR, 244:1093–1096, 1979. 3

[Kha80] Leonid.G. Khachiyan. Polynomial algorithms in linear programming. USSR Computa-
tional Mathematics and Mathematical Physics, 20(1):53–72, 1980. 3

[KM72] Victor Klee and George J. Minty. How good is the simplex algorithm? In Oved Shisha,
editor, Inequalities III (Proceedings of the Third Symposium on Inequalities held at the
University of California, Los Angeles, Calif., September 1–9, 1969, dedicated to the
memory of Theodore S. Motzkin), pages 159–175, 1972. 3

[Sho77] Naum Z. Shor. Cut-off method with space extension in convex programming problems.
Cybernetics and systems analysis, 13(1):94–96, 1977. 3

[Vai89] P.M. Vaidya. Speeding-up linear programming using fast matrix multiplication. In 30th
Annual Symposium on Foundations of Computer Science, pages 332–337, 1989. 3

[YN76] David B. Yudin and Arkadi S. Nemirovski. Evaluation of the information com- plexity of
mathematical programming problems. Ekonomika i Matematicheskie Metody, 12:128–
142, 1976. 3

7


	Outline
	Linear programming standard form
	Equality constraints to inequality constraints
	Inequality constraints to equality constraints
	Free variables to nonnegative variables
	Standard form

	History of linear programming

