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1 Outline

In this lecture, we cover

• the linear programming formulation for the inventory valuation problem,

• linearly representable functions,

• representing optimization problems as linear programs.

2 Optimization problems represented as linear programs

2.2 Projection

Remember that f is linearly representable if its epigraph epi(f) is given by

epi(f) =
{
(x, t) ∈ Rd × R : ∃y ∈ Rp s.t. Ax+Dy + ht ≤ r

}
for some A ∈ Rℓ×d, D ∈ Rℓ×p, and h, r ∈ Rℓ. Here, what does it mean by having auxiliary variables
y?

To answer this, we discuss the concept of projection. Let C ⊆ Rd × Rp be a set in the space
Rd × Rp. For convenience, we represent each point in C as (x, y) where x ∈ Rd and y ∈ Rp. Then
the projection of C onto the space of x part1, which is Rd, is given by

projx(C) =
{
x ∈ Rd : ∃y ∈ Rp s.t. (x, y) ∈ C

}
.

We also refer to this operation as projecting out the y variables. Figure 4.1 illustrates the
projection of a set in R× R to R.

Figure 4.1: Projection of a set in R2 to R

Getting back to epi(f), we take the set of vectors that have the (x, y, t) part and obtain

P =
{
(x, y, t) ∈ Rd × Rp × R : Ax+Dy + ht ≤ r

}
.

1This may not be the most conventional terminology.
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Then epi(f) is the projection of P onto the (x, t)-space.

2.3 Common linearly representable functions

In the previous section, we saw some linearly representable functions. In this section, we conver
more linearly representable functions.

Absolute value Let f(x) = |x| for x ∈ R. Note that |x| ≤ t if and only if −t ≤ x ≤ t. Therefore,

epi(f) = {(x, t) ∈ R× R : −t ≤ x ≤ t} .

Convex piecewise linear functions Let f(x) = maxi∈[n]
{
c⊤i x+ di

}
. Note that f(x) =

maxi∈[n]
{
c⊤i x+ di

}
≤ t if and only if c⊤i x+ di ≤ t for i ∈ [n]. Then

epi(f) =
{
(x, t) ∈ Rd × R : c⊤i x+ di ≤ t, ∀i ∈ [n]

}
.

ℓ1-norm Let f(x) = ∥x∥1 =
∑

j∈[d] |xj |. Note that ∥x∥1 ≤ t if and only if there exist s1, . . . , sd ∈ R
such that

|xj | ≤ sj , ∀j ∈ [d],
∑
j∈[d]

sj ≤ t.

This is equivalent to

−sj ≤ xj ≤ sj , ∀j ∈ [d],
∑
j∈[d]

sj ≤ t.

ℓ∞-norm Let f(x) = ∥x∥∞ = maxj∈[d] |xj |. Note that ∥x∥∞ ≤ t if and only if

|xj | ≤ t ∀j ∈ [d]

This is equivalent to
−t ≤ xj ≤ t, ∀j ∈ [d].

In fact, there are some operations that preserve linear representability, with which we can build
more complex linearly representable functions.

Theorem 4.1. Let f1(x), . . . , fn(x) be linearly representable functions. Then the following state-
ments hold.

1. For any non-negative scalars α1, . . . , αn,

f(x) =
∑
i∈[n]

αifi(x)

is linearly representable,

2. The point-wise maximum of f1, . . . , fn, given by

f(x) = max
i∈[n]

fi(x)

is linearly representable.
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Proof. For the first part,

epi(f) =

(x, t) ∈ Rd × R :
∑
i∈[n]

αifi(x) ≤ t


=

(x, t) ∈ Rd × R : ∃s ∈ Rn s.t.
∑
i∈[n]

αisi ≤ t, fi(x) ≤ si, ∀i ∈ [n]


=

(x, t) ∈ Rd × R : ∃s ∈ Rn s.t.
∑
i∈[n]

αisi ≤ t, (x, si) ∈ epi(fi), ∀i ∈ [n]

 .

For the second part,

epi(f) =

{
(x, t) ∈ Rd × R : max

i∈[n]
fi(x) ≤ t

}
=

{
(x, t) ∈ Rd × R : fi(x) ≤ t, ∀i ∈ [n]

}
=

{
(x, t) ∈ Rd × R : (x, t) ∈ epi(fi), ∀i ∈ [n]

}
.

In both cases, epi(f) is represented by a finite system of linear inequalities because f1, . . . , fn are
linearly representable.

3 Production planning with holding costs

In this section, we consider yet another variant of the production planning problem. Namely, we
consider holding costs of products. Consider the following setup for the production planning
problem.

• There are d different products and m different kinds of raw materials necessary for producing
the products.

• One unit of product j sells for price pj per unit for i ∈ [d].

• The current stock of material i is bi for i ∈ [m].

• Producing one unit of product j requires aij amount of material i for every pair (i, j) ∈
[m]× [d]. Here, [m]× [d] denote the set {(i, j) : i ∈ [m], j ∈ [d]}.

• Each product j ∈ [d] has a prescribed demand dj , and the company can sell up to only dj
units.

• If the company produces more than dj units, then extra production incurs cj holding cost
per unit.

• If the company produces less than dj units, then unsatisfied demand incurs hj penalty cost
per unit.

• Assume that there is no other cost.
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As before, we use variable xj for the amount of product j ∈ [d]. Then we have xj ≥ 0 for j ∈ [d],
and ∑

j∈[d]

aijxj ≤ bi

due to the current stock of raw material i ∈ [m]. To take holding costs into the objective, we observe
the following. If xj ≥ dj , then the compnay sells precisely dj units and the rest corresponds to
excess production. The holding cost due to excess production is cj(xj−dj) while there is no penalty.
Hence, the total profit from producing xj units of product j is

pjdj︸︷︷︸
selling at most dj units

− cj(xj − dj)︸ ︷︷ ︸
holding cost

= −cjxj + (pj + cj)dj .

If xj < dj , then the demand is not fully satisfied, and the company sells all the xj units produced.
There is no holding cost, while the penalty from unsatisfied demand is hj(dj−xj). Hence, the total
profit from producing xj units of product j is

pjxj︸︷︷︸
selling xj units

− hj(dj − xj)︸ ︷︷ ︸
penalty cost

= (pj + hj)xj − hjdj .

Figure 4.2 shows the profit function for product j. As the production increases from j up to dj , the
profit increases with the rate of (pj + hj). When the production goes beyond dj , the profit starts
decreasing with the rate of cj .

Figure 4.2: Profit function

Based on this, the profit function of product j is given by

min {−cjxj + (pj + cj)dj , (pj + hj)xj − hjdj} .

Hence, the objective we wish to maximize is the profit sum of products, given by

f(x) =
∑
j∈[d]

min {−cjxj + (pj + cj)dj , (pj + hj)xj − hjdj} .
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Therefore, the optimization model for the production planning problem is given by

max
∑
j∈[d]

min {−cjxj + (pj + cj)dj , (pj + hj)xj − hjdj}

s.t.
∑
j∈[d]

aijxj ≤ bi, ∀i ∈ [m],

xj ≥ 0, ∀j ∈ [d].

(4.1)

Next we convert this into a linear program. First, we may use the theorem on linear representabil-
ity. As the constraints are already given by linear functions, we need to show that the objective
is linearly representable. As the theorem is for the minimization problem, we can convert the
maximization problem into the equivalent minimization problem, given as follows.

min −
∑
j∈[d]

min {−cjxj + (pj + cj)dj , (pj + hj)xj − hjdj}

s.t.
∑
j∈[d]

aijxj ≤ bi, ∀i ∈ [m],

xj ≥ 0, ∀j ∈ [d],

and this is equivalent to

min
∑
j∈[d]

max {cjxj − (pj + cj)dj , −(pj + hj)xj + hjdj}

s.t.
∑
j∈[d]

aijxj ≤ bi, ∀i ∈ [m],

xj ≥ 0, ∀j ∈ [d],

Here, the objective is the sum of convex piecewise linear functions, so it is linearly representable.
The technique we learned from the last lecture gives us

min t

s.t.
∑
j∈[d]

sj ≤ t,

cjxj − (pj + cj)dj ≤ sj , ∀j ∈ [d],

− (pj + hj)xj + hjdj ≤ sj , ∀j ∈ [d],∑
j∈[d]

aijxj ≤ bi, ∀i ∈ [m],

xj ≥ 0, ∀j ∈ [d].

The second approach is to directly convert the maximization problem. Note that maximizing f(x)
is equivalent to maximizing an auxiliary variable t subject to f(x) ≥ t. Here f(x) ≥ t is∑

j∈[d]

min {−cjxj + (pj + cj)dj , (pj + hj)xj − hjdj} ≥ t,

which holds if and only if there exist s1, . . . , sd ∈ R such that∑
j∈[d]

sj ≥ t, min {−cjxj + (pj + cj)dj , (pj + hj)xj − hjdj} ≥ sj , ∀j ∈ [d].
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Here, min {−cjxj + (pj + cj)dj , (pj + hj)xj − hjdj} ≥ sj if and only if

−cjxj + (pj + cj)dj ≥ sj , (pj + hj)xj − hjdj ≥ sj .

Hence, we deduce the linear program

max t

s.t. t ≤
∑
j∈[d]

sj ,

sj ≤ −cjxj + (pj + cj)dj , ∀j ∈ [d],

sj ≤ (pj + hj)xj − hjdj , ∀j ∈ [d],∑
j∈[d]

aijxj ≤ bi, ∀i ∈ [m],

xj ≥ 0, ∀j ∈ [d].

(4.2)

In fact, the formulations (4.1) and (4.2) are equivalent, as we may relabel t → −t and sj → −sj
for j ∈ [d].
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