1 Outline

In this lecture, we cover

- the linear programming formulation for the inventory valuation problem,
- linearly representable functions,
- representing optimization problems as linear programs.

2 Optimization problems represented as linear programs

2.2 Projection

Remember that f is linearly representable if its epigraph epi (f) is given by

$$
\operatorname{epi}(f)=\left\{(x, t) \in \mathbb{R}^{d} \times \mathbb{R}: \exists y \in \mathbb{R}^{p} \text { s.t. } A x+D y+h t \leq r\right\}
$$

for some $A \in \mathbb{R}^{\ell \times d}, D \in \mathbb{R}^{\ell \times p}$, and $h, r \in \mathbb{R}^{\ell}$. Here, what does it mean by having auxiliary variables y ?
To answer this, we discuss the concept of projection. Let $C \subseteq \mathbb{R}^{d} \times \mathbb{R}^{p}$ be a set in the space $\mathbb{R}^{d} \times \mathbb{R}^{p}$. For convenience, we represent each point in C as (x, y) where $x \in \mathbb{R}^{d}$ and $y \in \mathbb{R}^{p}$. Then the projection of C onto the space of x part 1, which is \mathbb{R}^{d}, is given by

$$
\operatorname{proj}_{x}(C)=\left\{x \in \mathbb{R}^{d}: \exists y \in \mathbb{R}^{p} \text { s.t. }(x, y) \in C\right\}
$$

We also refer to this operation as projecting out the y variables. Figure 4.1 illustrates the projection of a set in $\mathbb{R} \times \mathbb{R}$ to \mathbb{R}.

Figure 4.1: Projection of a set in \mathbb{R}^{2} to \mathbb{R}
Getting back to epi (f), we take the set of vectors that have the (x, y, t) part and obtain

$$
P=\left\{(x, y, t) \in \mathbb{R}^{d} \times \mathbb{R}^{p} \times \mathbb{R}: A x+D y+h t \leq r\right\} .
$$

[^0]Then epi (f) is the projection of P onto the (x, t)-space.

2.3 Common linearly representable functions

In the previous section, we saw some linearly representable functions. In this section, we conver more linearly representable functions.

Absolute value Let $f(x)=|x|$ for $x \in \mathbb{R}$. Note that $|x| \leq t$ if and only if $-t \leq x \leq t$. Therefore,

$$
\operatorname{epi}(f)=\{(x, t) \in \mathbb{R} \times \mathbb{R}:-t \leq x \leq t\}
$$

Convex piecewise linear functions Let $f(x)=\max _{i \in[n]}\left\{c_{i}^{\top} x+d_{i}\right\}$. Note that $f(x)=$ $\max _{i \in[n]}\left\{c_{i}^{\top} x+d_{i}\right\} \leq t$ if and only if $c_{i}^{\top} x+d_{i} \leq t$ for $i \in[n]$. Then

$$
\operatorname{epi}(f)=\left\{(x, t) \in \mathbb{R}^{d} \times \mathbb{R}: c_{i}^{\top} x+d_{i} \leq t, \quad \forall i \in[n]\right\}
$$

ℓ_{1}-norm \quad Let $f(x)=\|x\|_{1}=\sum_{j \in[d]}\left|x_{j}\right|$. Note that $\|x\|_{1} \leq t$ if and only if there exist $s_{1}, \ldots, s_{d} \in \mathbb{R}$ such that

$$
\left|x_{j}\right| \leq s_{j}, \forall j \in[d], \quad \sum_{j \in[d]} s_{j} \leq t .
$$

This is equivalent to

$$
-s_{j} \leq x_{j} \leq s_{j}, \forall j \in[d], \quad \sum_{j \in[d]} s_{j} \leq t .
$$

ℓ_{∞}-norm Let $f(x)=\|x\|_{\infty}=\max _{j \in[d]}\left|x_{j}\right|$. Note that $\|x\|_{\infty} \leq t$ if and only if

$$
\left|x_{j}\right| \leq t \forall j \in[d]
$$

This is equivalent to

$$
-t \leq x_{j} \leq t, \forall j \in[d] .
$$

In fact, there are some operations that preserve linear representability, with which we can build more complex linearly representable functions.

Theorem 4.1. Let $f_{1}(x), \ldots, f_{n}(x)$ be linearly representable functions. Then the following statements hold.

1. For any non-negative scalars $\alpha_{1}, \ldots, \alpha_{n}$,

$$
f(x)=\sum_{i \in[n]} \alpha_{i} f_{i}(x)
$$

is linearly representable,
2. The point-wise maximum of f_{1}, \ldots, f_{n}, given by

$$
f(x)=\max _{i \in[n]} f_{i}(x)
$$

is linearly representable.

Proof. For the first part,

$$
\begin{aligned}
\operatorname{epi}(f) & =\left\{(x, t) \in \mathbb{R}^{d} \times \mathbb{R}: \sum_{i \in[n]} \alpha_{i} f_{i}(x) \leq t\right\} \\
& =\left\{(x, t) \in \mathbb{R}^{d} \times \mathbb{R}: \exists s \in \mathbb{R}^{n} \text { s.t. } \sum_{i \in[n]} \alpha_{i} s_{i} \leq t, f_{i}(x) \leq s_{i}, \forall i \in[n]\right\} \\
& =\left\{(x, t) \in \mathbb{R}^{d} \times \mathbb{R}: \exists s \in \mathbb{R}^{n} \text { s.t. } \sum_{i \in[n]} \alpha_{i} s_{i} \leq t,\left(x, s_{i}\right) \in \operatorname{epi}\left(f_{i}\right), \forall i \in[n]\right\} .
\end{aligned}
$$

For the second part,

$$
\begin{aligned}
\operatorname{epi}(f) & =\left\{(x, t) \in \mathbb{R}^{d} \times \mathbb{R}: \max _{i \in[n]} f_{i}(x) \leq t\right\} \\
& =\left\{(x, t) \in \mathbb{R}^{d} \times \mathbb{R}: f_{i}(x) \leq t, \forall i \in[n]\right\} \\
& =\left\{(x, t) \in \mathbb{R}^{d} \times \mathbb{R}:(x, t) \in \operatorname{epi}\left(f_{i}\right), \forall i \in[n]\right\} .
\end{aligned}
$$

In both cases, $\operatorname{epi}(f)$ is represented by a finite system of linear inequalities because f_{1}, \ldots, f_{n} are linearly representable.

3 Production planning with holding costs

In this section, we consider yet another variant of the production planning problem. Namely, we consider holding costs of products. Consider the following setup for the production planning problem.

- There are d different products and m different kinds of raw materials necessary for producing the products.
- One unit of product j sells for price p_{j} per unit for $i \in[d]$.
- The current stock of material i is b_{i} for $i \in[m]$.
- Producing one unit of product j requires $a_{i j}$ amount of material i for every pair $(i, j) \in$ $[m] \times[d]$. Here, $[m] \times[d]$ denote the set $\{(i, j): i \in[m], j \in[d]\}$.
- Each product $j \in[d]$ has a prescribed demand d_{j}, and the company can sell up to only d_{j} units.
- If the company produces more than d_{j} units, then extra production incurs c_{j} holding cost per unit.
- If the company produces less than d_{j} units, then unsatisfied demand incurs h_{j} penalty cost per unit.
- Assume that there is no other cost.

As before, we use variable x_{j} for the amount of product $j \in[d]$. Then we have $x_{j} \geq 0$ for $j \in[d]$, and

$$
\sum_{j \in[d]} a_{i j} x_{j} \leq b_{i}
$$

due to the current stock of raw material $i \in[m]$. To take holding costs into the objective, we observe the following. If $x_{j} \geq d_{j}$, then the compnay sells precisely d_{j} units and the rest corresponds to excess production. The holding cost due to excess production is $c_{j}\left(x_{j}-d_{j}\right)$ while there is no penalty. Hence, the total profit from producing x_{j} units of product j is

$$
\underbrace{p_{j} d_{j}}_{\text {selling at most } d_{j} \text { units }}-\underbrace{c_{j}\left(x_{j}-d_{j}\right)}_{\text {holding cost }}=-c_{j} x_{j}+\left(p_{j}+c_{j}\right) d_{j} .
$$

If $x_{j}<d_{j}$, then the demand is not fully satisfied, and the company sells all the x_{j} units produced. There is no holding cost, while the penalty from unsatisfied demand is $h_{j}\left(d_{j}-x_{j}\right)$. Hence, the total profit from producing x_{j} units of product j is

$$
\underbrace{p_{j} x_{j}}_{\text {selling } x_{j} \text { units }}-\underbrace{h_{j}\left(d_{j}-x_{j}\right)}_{\text {penalty cost }}=\left(p_{j}+h_{j}\right) x_{j}-h_{j} d_{j} .
$$

Figure 4.2 shows the profit function for product j. As the production increases from j up to d_{j}, the profit increases with the rate of $\left(p_{j}+h_{j}\right)$. When the production goes beyond d_{j}, the profit starts decreasing with the rate of c_{j}.

Figure 4.2: Profit function

Based on this, the profit function of product j is given by

$$
\min \left\{-c_{j} x_{j}+\left(p_{j}+c_{j}\right) d_{j},\left(p_{j}+h_{j}\right) x_{j}-h_{j} d_{j}\right\} .
$$

Hence, the objective we wish to maximize is the profit sum of products, given by

$$
f(x)=\sum_{j \in[d]} \min \left\{-c_{j} x_{j}+\left(p_{j}+c_{j}\right) d_{j},\left(p_{j}+h_{j}\right) x_{j}-h_{j} d_{j}\right\} .
$$

Therefore, the optimization model for the production planning problem is given by

$$
\begin{array}{ll}
\max & \sum_{j \in[d]} \min \left\{-c_{j} x_{j}+\left(p_{j}+c_{j}\right) d_{j}, \quad\left(p_{j}+h_{j}\right) x_{j}-h_{j} d_{j}\right\} \\
\text { s.t. } & \sum_{j \in[d]} a_{i j} x_{j} \leq b_{i}, \quad \forall i \in[m], \tag{4.1}\\
& x_{j} \geq 0, \quad \forall j \in[d] .
\end{array}
$$

Next we convert this into a linear program. First, we may use the theorem on linear representability. As the constraints are already given by linear functions, we need to show that the objective is linearly representable. As the theorem is for the minimization problem, we can convert the maximization problem into the equivalent minimization problem, given as follows.

$$
\begin{array}{ll}
\min & -\sum_{j \in[d]} \min \left\{-c_{j} x_{j}+\left(p_{j}+c_{j}\right) d_{j},\left(p_{j}+h_{j}\right) x_{j}-h_{j} d_{j}\right\} \\
\text { s.t. } & \sum_{j \in[d]} a_{i j} x_{j} \leq b_{i}, \quad \forall i \in[m], \\
& x_{j} \geq 0, \quad \forall j \in[d],
\end{array}
$$

and this is equivalent to

$$
\begin{array}{ll}
\min & \sum_{j \in[d]} \max \left\{c_{j} x_{j}-\left(p_{j}+c_{j}\right) d_{j},-\left(p_{j}+h_{j}\right) x_{j}+h_{j} d_{j}\right\} \\
\text { s.t. } & \sum_{j \in[d]} a_{i j} x_{j} \leq b_{i}, \quad \forall i \in[m], \\
& x_{j} \geq 0, \quad \forall j \in[d],
\end{array}
$$

Here, the objective is the sum of convex piecewise linear functions, so it is linearly representable. The technique we learned from the last lecture gives us

$$
\begin{array}{cl}
\min & t \\
\text { s.t. } & \sum_{j \in[d]} s_{j} \leq t, \\
& c_{j} x_{j}-\left(p_{j}+c_{j}\right) d_{j} \leq s_{j}, \quad \forall j \in[d], \\
& -\left(p_{j}+h_{j}\right) x_{j}+h_{j} d_{j} \leq s_{j}, \quad \forall j \in[d], \\
& \sum_{j \in[d]} a_{i j} x_{j} \leq b_{i}, \quad \forall i \in[m], \\
& x_{j} \geq 0, \quad \forall j \in[d] .
\end{array}
$$

The second approach is to directly convert the maximization problem. Note that maximizing $f(x)$ is equivalent to maximizing an auxiliary variable t subject to $f(x) \geq t$. Here $f(x) \geq t$ is

$$
\sum_{j \in[d]} \min \left\{-c_{j} x_{j}+\left(p_{j}+c_{j}\right) d_{j},\left(p_{j}+h_{j}\right) x_{j}-h_{j} d_{j}\right\} \geq t
$$

which holds if and only if there exist $s_{1}, \ldots, s_{d} \in \mathbb{R}$ such that

$$
\sum_{j \in[d]} s_{j} \geq t, \quad \min \left\{-c_{j} x_{j}+\left(p_{j}+c_{j}\right) d_{j},\left(p_{j}+h_{j}\right) x_{j}-h_{j} d_{j}\right\} \geq s_{j}, \forall j \in[d] .
$$

Here, $\min \left\{-c_{j} x_{j}+\left(p_{j}+c_{j}\right) d_{j},\left(p_{j}+h_{j}\right) x_{j}-h_{j} d_{j}\right\} \geq s_{j}$ if and only if

$$
-c_{j} x_{j}+\left(p_{j}+c_{j}\right) d_{j} \geq s_{j}, \quad\left(p_{j}+h_{j}\right) x_{j}-h_{j} d_{j} \geq s_{j}
$$

Hence, we deduce the linear program

$$
\begin{align*}
\max & t \\
\text { s.t. } & t \leq \sum_{j \in[d]} s_{j}, \\
& s_{j} \leq-c_{j} x_{j}+\left(p_{j}+c_{j}\right) d_{j}, \quad \forall j \in[d], \tag{4.2}\\
& s_{j} \leq\left(p_{j}+h_{j}\right) x_{j}-h_{j} d_{j}, \quad \forall j \in[d], \\
& \sum_{j \in[d]} a_{i j} x_{j} \leq b_{i}, \quad \forall i \in[m], \\
& x_{j} \geq 0, \quad \forall j \in[d] .
\end{align*}
$$

In fact, the formulations (4.1) and (4.2) are equivalent, as we may relabel $t \rightarrow-t$ and $s_{j} \rightarrow-s_{j}$ for $j \in[d]$.

[^0]: ${ }^{1}$ This may not be the most conventional terminology.

