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1 Outline

In this lecture, we cover

• the linear programming formulation for the inventory valuation problem,

• linearly representable functions,

• representing optimization problems as linear programs.

2 Inventory valuation problem

Consider the same company from the production planning problem.

• There are d different products and m different kinds of raw materials necessary for producing
the products.

• One unit of product j sells for price pj for i ∈ [d].

• The current stock of material i is bi for i ∈ [m]. We assume that each bi is strictly
positive! If bi = 0 for some i ∈ [m], we would not be able to make product j with
aij > 0.

• Producing one unit of project j requires aij amount of material i for every pair (i, j) ∈ [m]×[d].
Here, [m]× [d] denote the set {(i, j) : i ∈ [m], j ∈ [d]}.

Imagine a situation where the company could sell out the material inventory instead of consuming
it to make products. Assume that

• the current market price of material i is ri per unit for i ∈ [m].

The company tries to evaluate how much the current raw material inventory worth to the company.
Here, the value of raw material i is measured based on its market price and the prices of end products
obtained from consuming it.

We can solve this valuation problem by the following linear program. Let λi denote the unit value
of material i that we want to decide. First, we should satisfy

λi ≥ ri

for each material i ∈ [m] because we have the option of selling out the material. Second, for each
product j ∈ [d], we should satisfy ∑

i∈[m]

aijλi ≥ pj
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because we can make product j that sells for price pj per unit. Being as conservative as possible,
the total value of bi units of material i for i ∈ [m] can be measured by the following linear program.

min
∑
i∈[d]

biλi

s.t.
∑
i∈[m]

aijλi ≥ pj , j ∈ [d],

λi ≥ ri, i ∈ [m].

3 Optimization problems represented as linear programs

In general, what type of decision-making problems can be modeled as linear programs? Recall that
an optimization problem is of the form

min f(x)

s.t. gi(x) ≤ bi, i ∈ [m],

x ∈ Rd.

Here, if the objective function f and the constraint functions g1, . . . , gm are linear, then the opti-
mization problem is a linear program. In fact, even when the functions are non-linear, we may still
be able to represent the problem as a linear program.

Consider the following problem. Let V =
{
v1, . . . , vn

}
⊆ Rd be a set of vectors in a cluster. The

problem is to determine the center of the cluster. Here, the center is a point, from which the
distance to the set of n vectors is minimized. Depending on which distance metric is used, we may
obtain different centers.

Figure 3.1: Cluster of points

To define certain distance metrics, we consider some vector norms. Given a vector x ∈ Rd, the
`1-norm is defined as

‖x‖1 =
∑
j∈[d]

|xj |,

and the `∞-norm is defined as
‖x‖∞ = max

j∈[d]
|xj |.

Based on the vector norms, we will define the distance between a point x and the set V , denoted
as d(x), and we set the center of the cluster by solving

min
x

d(x).
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Figure 3.2: d(x): the distance between x and the set V

Now we consider the following four distance functions.

1. The sum of the `1-distance between x and individual vector vi for i ∈ [n].

d(x) =
∑
i∈[n]

∥∥x− vi∥∥
1
.

Figure 3.3: The norm-based distance between x and individual vi

2. The sum of the `∞-distance between x and individual vector vi for i ∈ [n].

d(x) =
∑
i∈[n]

∥∥x− vi∥∥∞ .
3. The maximum `1-distance between x and individual vector vi for i ∈ [n].

d(x) = max
i∈[n]

∥∥x− vi∥∥
1
.

4. The maximum `∞-distance between x and individual vector vi for i ∈ [n].

d(x) = max
i∈[n]

∥∥x− vi∥∥∞ .
Here, as the vector norms are not linear, the distance functions are not linear either. Nevertheless,
we will see that the problem for each of the four distance functions can be rewritten as a linear
program.
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3.1 Linearly representable functions

In this section, we study when an optimization problem can be recast as a linear program. The
epigraph of a function f : Rd → R is defined as

epi(f) = {(x, t) ∈ Rd × R : f(x) ≤ t} ⊆ Rd+1.

For example, Figure 3.4 illustrates the epigraph of a function over R.

Figure 3.4: Epigraph of a function

A function f : Rd → R is linearly representable if its epigraph epi(f) is represented with a finite
system of linear inequalities, i.e.,

epi(f) =
{

(x, t) ∈ Rd × R : ∃y ∈ Rp s.t. Ax+Dy + ht ≤ r
}

for some A ∈ R`×d, D ∈ R`×p, and h, r ∈ R`. Here, the variables y in the linear representation are
called auxiliary variables. We want variables (x, y, t) to satisfy the linear inequalities

Ax+Dy + ht ≤ r,

but epi(f) collects the points that has the (x, t) part.

Theorem 3.1. The optimization problem

min {f(x) : gi(x) ≤ bi, ∀i ∈ [m]}

can be reformulated as a linear program if the objective function and the constraint functions are
linearly representable.

Proof. The objective is to minimize f(x). We may reformulate this by introducing an auxiliary
variable t ∈ R. To be specific, minimizing f(x) is equivalent to minimizing t subject to an additional
constraint f(x) ≤ t. Therefore, the optimization is equivalent to

min {t : f(x) ≤ t, gi(x) ≤ bi, ∀i ∈ [m]} .

Using the notion of epigraphs, we can equivalently write this as

min {t : (x, t) ∈ epi(f), (x, bi) ∈ epi(gi), ∀i ∈ [m]} .

Since f is linearly representable,

epi(f) =
{

(x, t) ∈ Rd × R : ∃y ∈ Rp s.t. Ax+Dy + ht ≤ r
}
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for some A ∈ R`×d, D ∈ R`×p, and h, r ∈ R`. Moreover, since g1, . . . , gm are linearly representable,

epi(gi) =
{

(x, t) ∈ Rd × R : ∃zi ∈ Rqi s.t. Aix+Dizi + hit ≤ ri
}

for some Ai ∈ R`i×d, Di ∈ R`i×p, and hi, ri ∈ R`i . Therefore, the optimization problem is equivalent
to

min t

s.t. Ax+Dy + ht ≤ r,
Aix+Dizi ≤ ri − hibi, i ∈ [m],

x ∈ Rd, t ∈ R, y ∈ Rp, zi ∈ Rqi , i ∈ [m],

which is a linear program.

By definition, any linear function is linearly representable. In fact, there exist functions that are
non-linear but linearly representable.

Example 3.2. f(x1, x2, x3) = max{x1, 2x2 + x3, 2x3 − x1}. Its epigraph is given by

{(x1, x2, x3, t) : max{x1, 2x2 + x3, 2x3 − x1} ≤ t}

Note that max{x1, 2x2 + x3, 2x3 − x1} ≤ t is equivalent to

x1,≤ t, 2x2 + x3 ≤ t, 2x3 − x1 ≤ t.

Therefore, it follows that

epi(f) = {(x1, x2, x3, t) : x1 ≤ t, 2x2 + x3 ≤ t, 2x3 − x1 ≤ t} ,

so f is linearly representable.
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