1 Outline

In this lecture, we cover

- Errata in Value at Risk (VaR) materials (Lectures 19 and 20),
- two-period investment.

2 Errata: Value at Risk (VaR)

2.1 Lecture 19

Assume that we have likelikhood weights p_{i} for each scenario ξ_{i} and the distribution \hat{P}_{N} with

$$
\mathbb{P}_{\xi \sim \hat{P}_{N}}\left[\xi=\xi_{i}\right]=p_{i}, \quad i \in[N] .
$$

Fix some $\alpha \in(0,1)$. In Lecture 19, we defined the Value-at-Risk at level α or α - VaR is the risk measure defined as

$$
\operatorname{VaR}_{\alpha}\left(g(x, \xi) ; \hat{P}_{N}\right)=\min \left\{t: \mathbb{P}_{\xi \sim \hat{P}_{N}}[g(x, \xi) \leq t]>\alpha\right\} .
$$

There is a mistake in this definition. The correct definition is

$$
\operatorname{VaR}_{\alpha}\left(g(x, \xi) ; \hat{P}_{N}\right)=\min \left\{t: \mathbb{P}_{\xi \sim \hat{P}_{N}}[g(x, \xi) \leq t] \geq \alpha\right\}
$$

where the lower bound on the probability is given by a non-strict inequality. We also considered the following example.

Example 24.1. Suppose that we have

i	1	2	3	4	5	6
p_{i}	0.05	0.15	0.1	0.4	0.2	0.1
$g\left(x, \xi_{i}\right)$	10	8	6	3	2	-2
$\mathbb{P}_{\xi \sim \hat{P}_{N}}\left[g(x, \xi) \leq g\left(x, \xi_{i}\right)\right]$	1	0.95	0.8	0.7	0.3	0.1

Then

- $\operatorname{VaR}_{0.98}\left(g(x, \xi) ; \hat{P}_{N}\right)=10$.
- $\operatorname{VaR}_{0.95}\left(g(x, \xi) ; \hat{P}_{N}\right)=1 \varnothing \rightarrow 8$.
- $\operatorname{VaR}_{0.85}\left(g(x, \xi) ; \hat{P}_{N}\right)=8$.
- $\operatorname{VaR}_{0.8}\left(g(x, \xi) ; \hat{P}_{N}\right)=\varnothing \rightarrow 6$.
- $\operatorname{VaR}_{0.7}\left(g(x, \xi) ; \hat{P}_{N}\right)=\emptyset \rightarrow 3$.
- $\operatorname{VaR}_{0.6}\left(g(x, \xi) ; \hat{P}_{N}\right)=3$.

When $p_{i}=1 / N$ for $i \in[N]$ and $\alpha=1-k / N$, then $\operatorname{VaR}_{\alpha}\left(g(x, \xi) ; \hat{P}_{N}\right)$ is not the k th largest value but the $(k+1)$ th largest value among $g\left(x, \xi_{1}\right), \ldots, g\left(x, \xi_{N}\right)$. Basically, if $g\left(x, \xi_{1}\right) \geq \cdots \geq g\left(x, \xi_{N}\right)$, then

$$
\operatorname{VaR}_{1-k / N}\left(g(x, \xi) ; \hat{P}_{N}\right)=g\left(x, \xi_{k+1}\right), \quad k=0,1, \ldots
$$

2.2 Lecture 20

Assume that we can model any constraint of the form $g\left(x, \xi_{i}\right) \leq b_{i}$. Based on this, let us try to model

$$
\operatorname{VaR}_{\alpha}\left(g(x, \xi) ; \hat{P}_{N}\right) \leq 0
$$

This is equivalent to

$$
\min \left\{t: \mathbb{P}_{\xi \sim \hat{P}_{N}}[g(x, \xi) \leq t]>\alpha\right\} \leq 0 \rightarrow \min \left\{t: \mathbb{P}_{\xi \sim \hat{P}_{N}}[g(x, \xi) \leq t] \geq \alpha\right\} \leq 0
$$

We may rewrite this as

$$
\begin{aligned}
t & \leq 0 \\
\mathbb{P}_{\xi \sim \hat{P}_{*}}[g(x, \xi) \leq t]>\alpha \quad \rightarrow \quad \mathbb{P}_{\xi \sim \hat{P}_{N}}[g(x, \xi) \leq t] & \geq \alpha
\end{aligned}
$$

Without loss of generality, we can take $t=0$ and just consider

$$
\mathbb{P}_{\xi \sim \hat{P}_{N}}[g(x, \xi) \leq 0]>\alpha \quad \rightarrow \quad \mathbb{P}_{\xi \sim \hat{P}_{N}}[g(x, \xi) \leq 0] \geq \alpha
$$

This is because $\mathbb{P}_{\xi \sim \hat{P}_{N}}[g(x, \xi) \leq 0]$ never decreases as t increases.
Therefore, $\operatorname{VaR}_{\alpha}\left(g(x, \xi) ; \hat{P}_{N}\right) \leq 0$ is equivalent to a chance constraint.

$$
\mathbb{P}_{\xi \sim \hat{P}_{N}}[g(x, \xi) \leq 0]>\alpha \quad \rightarrow \quad \mathbb{P}_{\xi \sim \hat{P}_{N}}[g(x, \xi) \leq 0] \geq \alpha \quad \Leftrightarrow \quad \mathbb{P}_{\xi \sim \hat{P}_{N}}[g(x, \xi)>0] \leq 1-\alpha .
$$

To model this, we introduce binary variables $z_{i} \in\{0,1\}$ for $i \in[N]$ for scenarios.

$$
z_{i}= \begin{cases}1, & \text { if } g\left(x, \xi_{i}\right)>0 \\ 0, & \text { otherwise }\end{cases}
$$

Basically, we add implications

$$
z_{i}=0 \Rightarrow g\left(x, \xi_{i}\right) \leq 0, \quad i \in[N]
$$

This can be modelled with the big-M technique:

$$
g\left(x, \xi_{i}\right) \leq M z_{i}, \quad i \in[N] .
$$

We need to ensure that the probability $g(x, \xi)>0$ is no greater than $1-\alpha$:

$$
\sum_{i \in[N]} p_{i} z_{i} \leq 1-\alpha
$$

In summary,

$$
\begin{array}{ll}
\min & f(x) \\
\text { s.t. } & \operatorname{VaR}_{\alpha}\left(g(x, \xi) ; \hat{P}_{N}\right) \leq 0 \\
& x \in \mathcal{X}
\end{array}
$$

is equivalent to

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & g\left(x, \xi_{i}\right) \leq M z_{i}, \quad i \in[N] \\
& \sum_{i \in[N]} p_{i} z_{i} \leq 1-\alpha \\
& x \in \mathcal{X}, z \in\{0,1\}^{N}
\end{array}
$$

3 Two-period investment

Let us consider a two-period investment problem. Here, we have three stages of decisions in the optimization model. Remember that $r_{s, 1}$ is the random return of stocks for period 1 and that $r_{s, 2}$ is the random return for period 2 . Suppose that there are n outcomes for period 1 :

$$
r_{s, 1}^{(1)}, \ldots, r_{s, 1}^{(n)} .
$$

Next, under the i th outcome $r_{s, 1}^{(i)}$ for period 1, we assume that n outcomes for period 2:

$$
r_{s, 1}^{(i, 1)}, \ldots, r_{s, 1}^{(i, n)}
$$

This is summarized as the following scenario tree. Since there are n outcomes for period 1 and n

Figure 24.1: The scenario tree under n outcomes for each stage
outcomes for period 2, there are technically $n \times n=n^{2}$ scenarios. Moreover, we assume that each outcome occurs with equal probability $1 / n$. More specifically,

$$
\begin{aligned}
& \mathbb{P}\left[r_{s, 1}=r_{s, 1}^{(i)}\right]=\frac{1}{n}, \quad i=1, \ldots, n \\
& \mathbb{P}\left[r_{s, 2}=r_{s, 2}^{(i, j)} \mid r_{s, 1}=r_{s, 1}^{(i)}\right]=\frac{1}{n}, \quad i=1, \ldots, n, j=1, \ldots, n
\end{aligned}
$$

Figure 24.2: The scenario tree under n^{2} scenarios

Decisions The period 1 investment decision is given by

$$
x_{1}=\left(x_{s, 1}, x_{o, 1}\right)
$$

where $x_{s, 1}$ is for stocks and $x_{o, 1}$ is for savings. At the end of period 1 , we observe a value among

$$
r_{s, 1}^{(1)}, \ldots, r_{s, 1}^{(n)},
$$

each of which occurs with probability $1 / n$. When the outcome is $r_{s, 1}^{(i)}$, the period 2 investment decision is given by

$$
x_{2}^{(i)}=\left(x_{s, 2}^{(i)}, x_{o, 2}^{(i)}\right), \quad i=1, \ldots, n .
$$

After period 2, we observe

$$
r_{s, 2}^{(i, 1)}, \ldots, r_{s, 2}^{(i, n)},
$$

each of which occurs with probability $1 / n$. When the outcome is $r_{s, 2}^{(i, j)}$, the total wealth is

$$
w_{2}^{(i, j)}=r_{s, 2}^{(i, j)} x_{s, 2}^{(i)}+x_{o, 2}^{(i)} .
$$

Third-stage model The third-stage is after period 2 where we collect the total reward from the two periods. Then the objective is to maximize the reward given by

$$
\min \left\{p\left(w_{2}^{(i, j)}-G\right), q\left(w_{2}^{(i, j)}-G\right)\right\}
$$

where p is the borrowing rate and q is the interest rate. Then the third-stage model is given by

$$
\begin{aligned}
\max & \min \left\{p\left(w_{2}^{(i, j)}-G\right), q\left(w_{2}^{(i, j)}-G\right)\right\} \\
\text { s.t. } & w_{2}^{(i, j)}=r_{s, 2}^{(i, j)} x_{s, 2}^{(i)}+x_{o, 2}^{(i)} .
\end{aligned}
$$

We can represent this as the following linear program.

$$
\begin{aligned}
\max & t^{(i, j)} \\
\text { s.t. } & w_{2}^{(i, j)}=r_{s, 2}^{(i, j)} x_{s, 2}^{(i)}+x_{o, 2}^{(i)} \\
& t^{(i, j)} \leq p\left(w_{2}^{(i, j)}-G\right) \\
& t^{(i, j)} \leq q\left(w_{2}^{(i, j)}-G\right)
\end{aligned}
$$

Second-stage model The second stage is after period 1 and before period 2. In the second stage, we prepare our second period investment plan. Assuming that the first period outcome is $r_{s, 1}^{(i)}$, the wealth from period 1 would be

$$
w_{1}^{(i)}=r_{s, 1}^{(i)} x_{s, 1}+x_{o, 1} .
$$

For period 2, we allocate the wealth to stocks and savings. Hence,

$$
w_{1}^{(i)}=x_{s, 2}^{(i)}+x_{o, 2}^{(i)} .
$$

Eliminating the term $w_{1}^{(i)}$, we can simply write

$$
r_{s, 1}^{(i)} x_{s, 1}+x_{o, 1}=x_{s, 2}^{(i)}+x_{o, 2}^{(i)} .
$$

Moreover,

$$
x_{s, 2}^{(i)}, x_{o, 2}^{(i)} \geq 0
$$

The objective is to maximize the expeted third-stage value

$$
\frac{1}{n} \sum_{j=1}^{n} Q_{3}\left(x_{1}, x_{2}^{(i)}, r_{s, 1}^{(i)}, r_{s, 2}^{(i, j)}\right)
$$

Then the second-stage model is given by

$$
\begin{array}{ll}
\max & \frac{1}{n} \sum_{j=1}^{n} Q_{3}\left(x_{1}, x_{2}^{(i)}, r_{s, 1}^{(i)}, r_{s, 2}^{(i, j)}\right) \\
\text { s.t. } & r_{s, 1}^{(i)} x_{s, 1}+x_{o, 1}=x_{s, 2}^{(i)}+x_{o, 2}^{(i)} \\
& x_{s, 2}^{(i)}, x_{o, 2}^{(i)} \geq 0 .
\end{array}
$$

First-stage model Note that the initial budget is B. Hence, we have

$$
B=x_{s, 1}+x_{o, 1} .
$$

Moreover, for simplicity, we assume no short selling and no leverage. Then

$$
x_{s, 1}, x_{o, 1} \geq 0 .
$$

The first stage objective is to maximize the expeted second-stage value

$$
\frac{1}{n} \sum_{i=1}^{n} Q_{2}\left(x_{1}, r_{s, 1}^{(i)}\right) .
$$

Hence, the first-stage model is given by

$$
\begin{aligned}
\max & \frac{1}{n} \sum_{i=1}^{n} Q_{2}\left(x_{1}, r_{s, 1}^{(i)}\right) \\
\text { s.t. } & x_{s, 1}+x_{o, 1}=B \\
& x_{s, 1}, x_{o, 1} \geq 0
\end{aligned}
$$

Aggregated model The full model after aggregating the three stages is given as follows.

$$
\begin{array}{ll}
\max & \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} t^{(i, j)} \\
\text { s.t. } & x_{s, 1}+x_{o, 1}=B \\
& x_{s, 1}, x_{o, 1} \geq 0 \\
& r_{s, 1}^{(i)} x_{s, 1}+x_{o, 1}=x_{s, 2}^{(i)}+x_{o, 2}^{(i)}, \quad i=1, \ldots, n \\
& x_{s, 2}^{(i)}, x_{o, 2}^{(i)} \geq 0, \quad i=1, \ldots, n \\
& w_{2}^{(i, j)}=r_{s, 2}^{(i, j)} x_{s, 2}^{(i)}+x_{o, 2}^{(i)}, \quad i=1, \ldots, n, j=1, \ldots, n \\
& t^{(i, j)} \leq p\left(w_{2}^{(i, j)}-G\right), \quad i=1, \ldots, n, j=1, \ldots, n \\
& t^{(i, j)} \leq q\left(w_{2}^{(i, j)}-G\right), \quad i=1, \ldots, n, j=1, \ldots, n
\end{array}
$$

