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1 Outline

In this lecture, we cover

• introduction to multi-stage optimization,

• formulations based on scenario trees.

2 Introduction to multi-stage optimization

Many settings require us to make a sequence of decisions over time, as new information is revealed.
This has been studied under several different names. To name a few,

• online learning and online algorithms,

• sequential decision-making,

• reinforcement learning,

• dynamic programming,

• multi-stage optimization.

Each has slightly different flavors. In this course, we study multi-stage optimization, where the
focus is on how to model these problems using mathematical optimization. We will particularly
focus on linear programming formulations of these problems.

3 Investment planning

We consider a simple investment example to illustrate the ideas. The base investment amount is
B, and a target amount is G for a future expense (e.g., buying a property). Assume that we have
T investment periods. Then the goal is to implement an investment plan so that the welath wT at
the end of period T can be used towards to expense. If wT > G, then we earn

q(wT −G)

where q > 1 is the interest rate, since we can deposit the excess wT − G into a bank account. If
the final wealth wT ≤ G, then we pay

p(G− wT )

where p > q is the borrowing rate, as we need to borrrow G− wT to cover the expense. Succintly,
the reward for generating wealth wT is

min {p(wT −G), q(wT −G)} .

There are two different instruments for investment, stocks (s) and savings (o). Let t ∈ [T ] be a
period.
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At the start of period t, we allocate amounts to stocks and savings, and let xs,t and xo,t denote
these amounts, respectively. We have a simple spending constraint

wt−1 = xs,t + xo,t, t ≥ 2

w0 = B

where wt−1 is the wealth generated from the previous period for t ≥ 2. We can short sell stocks
(borrow shares) hence xs,t can be negative, but we consider the setting where

xs,t ≥ 0.

At the end of period t, for the amount saved xo,t, we receive all of it back, with certainty. We
receive returns on stocks wich are random, i.e., unknown at the start of the priod. Let rs,t be the
respective return for stocks. Then the total wealth at the end of the period is

wt = rs,txs,t + xo,t.

For simplicity, we assume no tax and no transaction fees, no discounting factors.

For three periods, there are four stages of decisions as follows.

• At stage 1 (the start of period 1), we allocate x1 = (xs,1, xo,1).

• At stage 2 (the end of period 1/the start of period 2), we observe rs,1, based on which we
allocate x2 = (xs,2, xo,2).

• At stage 3 (the end of period 2/the start of period 3), we observe rs,2, based on which we
allocate x3 = (xs,3, xo,3).

• At stage 4 (the end of period 3), we observe rs,3.

There are a couple of remarks. Some decisions must be made before information is revealed, while
others can be made after. Our models need to account for the dependence between decisions made
before information is revealed, and those made after.

4 Multi-stage optimization models

For general multi-stage models, the workflow is as follows. Consider period t ∈ [T ].

• We implement decision xt for period t, before observing information ξt.

• Receive and observe information ξt.

• We prepare decision xt+1 for period t+ 1 based on {x1, . . . , xt} and {ξ1, . . . , ξt}.
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In one picture, we have

implement decision x1

→ receive ξ1 → implement decision x2
...

→ receive ξT−2 → implement decision xT−1

→ receive ξT−1 → implement decision xT .

Here, we always start by implementing decision x1 and finish by implementing decision xT .

Let us define some notations for simpler presentation.

• ξ = (ξ1, . . . , ξT−1) is the vector of data across all stages.

• x = (x1, . . . , xT ) is the vector of decisions across all stages.

• Here the components ξ1, . . . , ξT−1 and x1, . . . , xT themselves are also vectors, so think of ξ
and x as stacked vectors.

• For t ∈ [T ], ξ[t] = (ξ1, . . . , ξt) and x[t] = (x1, . . . , xt) are vectors representing data and decisions
from stages 1 to t, inclusive.

Define the final-stage decision model as follows.

QT (x[T−1], ξ[T−1]) := min
xT

cT (ξ[T−1])
⊤xT

s.t. AT (ξ[T−1])x[T−1] +BT (ξ[T−1])xT ≥ bT (ξ[T−1]).

Here, cT (ξ[T−1]) is the cost vector for stage T determined by the past data ξ[T−1], and xT is the
decision made at the final-stage. AT (ξ[T−1]) and BT (ξ[T−1]) are the constraint matrices for stage T
determined by the past data ξ[T−1].

Define the stage-t decision model for 2 ≤ t ≤ T − 1 as follows.

Qt(x[t−1], ξ[t−1]) := min
xt

ct(ξ[t−1])
⊤xt + E

[
Qt+1(x[t], ξ[t]) | ξ[t−1]

]
s.t. At(ξ[t−1])x[t−1] +Bt(ξ[t−1])xt ≥ bt(ξ[t−1]).

Again, ct(ξ[t−1]) is the cost vector for stage t determined by the past data ξ[t−1], and xt is the decision
made at stage t. At(ξ[t−1]) and Bt(ξ[t−1]) are the constraint matrices for stage t determined by the
past data ξ[t−1]. Moreover,

E
[
Qt+1(x[t], ξ[t]) | ξ[t−1]

]
is the expectation of the stage-(t+1) value Qt+1(x[t], ξ[t]) conditional on the data ξ[t−1] up to stage
t − 1. Basically, when computing the conditional expectation, we consider the randomness of ξt
only.

Lastly, we define the first-stage decision model as

min
x1

c⊤1 x1 + E [Q2(x1, ξ1)]

s.t. B1x1 ≥ b1.

Hence, when we make decision x1, we consider Q2(x1, ξ1). In fact, Q2(x1, ξ1) is determined by the
data across not only the current stage ξ1 and but also all future stages ξ2, . . . , ξT−1. Although
we make decision for stage 1, we need to look ahead future stages based on predictions about the
future.
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5 Formulation based on scenario tree

The two-stage optimization model is given by

min
x1

c⊤1 x1 + E [Q2(x1, ξ1)]

s.t. B1x1 ≥ b1

where

Q2(x1, ξ1) := min
x2

c2(ξ1)
⊤x2

s.t. A2(ξ1)x1 +B2(ξ1)x2 ≥ b2(ξ1).

To solve this, we used scenarios to predict the value of ξ1. For more than two stages, we also
need to consider ξ2, . . . , ξT−1. Hence, we use what is called a scenario tree since the information
is revealed sequentially, and we need to account for the information structure. Let ξ1, . . . , ξN be
our scenarios. Here,

ξi = (ξi1, . . . , ξ
i
T−1)

and ξit is the data observed at the end of stage t ∈ [T − 1].

For example, let us consider the case with T = 3, i.e., a three-stage model. Note that the three-stage
model is given by

min
x1

c⊤1 x1 + E [Q2(x1, ξ1)]

s.t. B1x1 ≥ b1

where

Q2(x1, ξ1) := min
x2

c2(ξ1)
⊤x2 + E [Q3((x1, x2), (ξ1, ξ2)) | ξ1]

s.t. A2(ξ1)x1 +B2(ξ1)x2 ≥ b2(ξ1)

and

Q3((x1, x2), (ξ1, ξ2)) := min
x3

c3(ξ1, ξ2)
⊤x3

s.t. A3(ξ1, ξ2)(x1, x2) +B3(ξ1, ξ2)x3 ≥ b3(ξ1, ξ2).

Suppose that we five scenarios.

ξ1 = (ξ11 , ξ
1
2)

ξ2 = (ξ21 , ξ
2
2)

ξ3 = (ξ31 , ξ
3
2)

ξ4 = (ξ41 , ξ
4
2)

ξ5 = (ξ51 , ξ
5
2).

We represent multiple stages within scenarios as the tree structure as in Figure 23.1. This is a
scenario tree. Assume that scenarios ξ1, . . . , ξ5 occur with equal probability:

P
[
ξ = ξ1

]
= · · · = P

[
ξ = ξ5

]
=

1

5
.
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Root

ξ11 ξ21 ξ31 ξ41 ξ51

ξ12 ξ22 ξ32 ξ42 ξ52

Figure 23.1: A scenario tree for T = 3

Then

E [Q2(x1, ξ1)] =
∑
i∈[5]

P
[
ξ = ξi

]
·Q2(x1, ξ

i
1) =

1

5

∑
i∈[5]

Q2(x1, ξ
i
1).

Moreover, by the scenario tree structure, we know that if the first-stage information is ξi1, then the
second-stage outcome would be ξi2. Therefore,

E
[
Q3((x1, x2), (ξ1, ξ2)) | ξ1 = ξi1

]
= Q3((x1, x2), (ξ

i
1, ξ

i
2)).

For each scenario i ∈ [5], we define variable

(x1, x
i
2, x

i
3)

for three stages. Then the resulting optimization model is given by

min
x1

c⊤1 x1 +
1

5

∑
i∈[5]

Q2(x1, ξ
i
1)

s.t. B1x1 ≥ b1

where

Q2(x1, ξ
i
1) := min

xi
2

c2(ξ
i
1)

⊤xi2 +Q3((x1, x
i
2), (ξ

i
1, ξ

i
2))

s.t. A2(ξ
i
1)x1 +B2(ξ

i
1)x

i
2 ≥ b2(ξ

i
1)

and

Q3((x1, x
i
2), (ξ

i
1, ξ

i
2)) := min

xi
3

c3(ξ
i
1, ξ

i
2)

⊤xi3

s.t. A3(ξ
i
1, ξ

i
2)(x1, x

i
2) +B3(ξ

i
1, ξ

i
2)x

i
3 ≥ b3(ξ

i
1, ξ

i
2).

Here, we use variables xi2, x
i
3 for scenario i. Therefore, the aggregated model is given by

min c⊤1 x1 +
1

5

∑
i∈[5]

(
c2(ξ

i
1)

⊤xi2 + c3(ξ
i
1, ξ

i
2)

⊤xi3

)
s.t. B1x1 ≥ b1

A2(ξ
i
1)x1 +B2(ξ

i
1)x

i
2 ≥ b2(ξ

i
1), i ∈ [5]

A3(ξ
i
1, ξ

i
2)(x1, x

i
2) +B3(ξ

i
1, ξ

i
2)x

i
3 ≥ b3(ξ

i
1, ξ

i
2), i ∈ [5].
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6 Aggregating scenario trees

What if we only have two possible outcomes for ξ1 (first stage data). Let ξa1 and ξb1 denote the
two outcomes. Suppose that

• ξ11 = ξ21 = ξa1 ,

• ξ31 = ξ41 = ξ51 = ξb1.

Here, if we see ξa1 , we cannot tell if we are in scenario 1 or 2. If we see ξb1, we cannot tell if
we are in scenario 3, 4, or 5. Figure 23.2 represents the scenario tree for this case. Note that we

Root

ξa1 = ξ11 = ξ21 ξb1 = ξ31 = ξ41 = ξ51

ξ12 ξ22 ξ32 ξ42 ξ52

Figure 23.2: The scenario tree aggregating the same second stage outcomes

may have ξ12 = ξ32 . However, we use distinct nodes for ξ12 and ξ32 , because their parent nodes are
different. We use the notion of non-anticipative constraints derived by examining the scenario
tree given in Figure 23.2. We add the following constraints according to the scenario tree given in
Figure 23.2.

x12 = x22 (level 1, left node)

x32 = x42 = x52 (level 1, right node)

Then the resulting optimization model is given by

min c⊤1 x1 +
1

5

∑
i∈[5]

(
c2(ξ

i
1)

⊤xi2 + c3(ξ
i
1, ξ

i
2)

⊤xi3

)
s.t. B1x1 ≥ b1

A2(ξ
i
1)x1 +B2(ξ

i
1)x

i
2 ≥ b2(ξ

i
1), i ∈ [5]

A3(ξ
i
1, ξ

i
2)(x1, x

i
2) +B3(ξ

i
1, ξ

i
2)x

i
3 ≥ b3(ξ

i
1, ξ

i
2), i ∈ [5]

x12 = x22

x32 = x42 = x52.

We can get a more compact representation by replacing each non-anticipative constraint with a
single variable, according to the scenario tree as in Figure 23.3. Basically, we replace both x12 and
x22 by xa2, and we replace x32, x

4
2, x

5
2 by xb2. Then we deduce the following optimization model.
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Root
x1

ξa1 = ξ11 = ξ21
xa2

ξb1 = ξ31 = ξ41 = ξ51
xb2

ξ12
x13

ξ22
x23

ξ32
x33

ξ42
x43

ξ52
x53

Figure 23.3: The scenario tree with corresponding variables

min c⊤1 x1 +

(
2

5
c2(ξ

a
1)x

a
2 +

3

5
c2(ξ

b
1)x

b
2

)
+

1

5
c3(ξ

a
1 , ξ

1
2)

⊤x13 +
1

5
c3(ξ

a
1 , ξ

2
2)

⊤x23

+
1

5
c3(ξ

b
1, ξ

3
2)

⊤x33 +
1

5
c3(ξ

b
1, ξ

4
2)

⊤x43 +
1

5
c3(ξ

b
1, ξ

5
2)

⊤x53

s.t. B1x1 ≥ b1

A2(ξ
a
1)x1 +B2(ξ

a
1)x

a
2 ≥ b2(ξ

a
1)

A2(ξ
b
1)x1 +B2(ξ

b
1)x

b
2 ≥ b2(ξ

b
1)

A3(ξ
a
1 , ξ

1
2)(x1, x

a
2) +B3(ξ

a
1 , ξ

1
2)x

1
3 ≥ b3(ξ

a
1 , ξ

1
2)

A3(ξ
a
1 , ξ

2
2)(x1, x

a
2) +B3(ξ

a
1 , ξ

2
2)x

2
3 ≥ b3(ξ

a
1 , ξ

2
2)

A3(ξ
b
1, ξ

3
2)(x1, x

b
2) +B3(ξ

b
1, ξ

3
2)x

3
3 ≥ b3(ξ

b
1, ξ

3
2)

A3(ξ
b
1, ξ

4
2)(x1, x

b
2) +B3(ξ

b
1, ξ

4
2)x

4
3 ≥ b3(ξ

b
1, ξ

4
2)

A3(ξ
b
1, ξ

5
2)(x1, x

b
2) +B3(ξ

b
1, ξ

5
2)x

5
3 ≥ b3(ξ

b
1, ξ

5
2).
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