
IE 331 OR: Optimization KAIST, Spring 2023
Lecture #22: Two-stage optimization framework May 23, 2023
Lecturer: Dabeen Lee

1 Outline

In this lecture, we cover

• the two-stage optimization framework,

• two-stage optimization models with various risk measures.

2 Two-stage optimization models

Let us describe general two-stage optimization models. The workflow proceeds as follows.

1. Implement the first-stage decision x1, e.g., fixed testing center locations.

2. Observe information ξ.

3. Implement the second-stage decision x2 based on x1 and ξ, e.g., mobile testing center locations
and test case allocations.

Here, we use the following terminologies.

• x1 is called the here-and-now decision since they must be executed up-front before observ-
ing ξ.

• x2 is called the wait-and-see decision or the recourse decision since they can be executed
after information ξ is revealed.

Note that the realized information ξ can change the course of action.

Let Q(x1, ξ) be the cost of the first-stage decision x1 associated with information ξ, given that the
second-stage decision x2 is chosen optimally with respect to x1 and ξ. Formally, Q(x1, ξ) is given
by

Q(x1, ξ) := min c2(ξ)
>x2

s.t. A2(ξ)x1 +B2(ξ)x2 ≥ b2(ξ).

Again, the second-decision decision optimizes the second-stage problem that is specified after the
first-stage decision is made and the information ξ is realized. Here, the objective vector c2(ξ),
constraint matrices A2(ξ), B2(ξ), and the right-hand side vector b2(ξ) depend on the information ξ.
Assuming that x2 is always chosen as an optimal second-stage decision, Q(x1, ξ) encodes the value
of the first-stage decision x1. Then, we choose x1 by minimizing the overall expected cost.

min c>1 x1 + E [Q(x1, ξ)]

s.t. A1x1 ≥ b1.

Here, we may use other risk measures instead of expectation.
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Then the next question is, how do we solve this? As before, we assume that we are given N
scenarios about the information ξ. We are given

ξ1, . . . , ξN .

Assume that
P [ξ = ξi] = pi, i ∈ [N ]

with
∑

i∈[N ] pi = 1. Then

E [Q(x1, ξ)] =
∑
i∈[N ]

piQ(x1, ξi).

Plugging this to the two-stage optimization model, we deduce

min c>1 x1 +
∑
i∈[N ]

piQ(x1, ξi)

s.t. A1x1 ≥ b1.

By adding some auxiliary variables, we can rewrite the optimization model as

min c>1 x1 +
∑
i∈[N ]

piti

s.t. A1x1 ≥ b1
Q(x1, ξi) ≤ ti, i ∈ [N ].

Next, we can handle constraint
Q(x1, ξi) ≤ ti

by the procedure called lifting. In fact, we have already used the procedure without specifying the
terminology. Recall that Q(x1, ξi) is given by the second stage optimization problem with ξ = ξi.

Q(x1, ξi) = min c2(ξi)
>xi2

s.t. A2(ξi)x1 +B2(ξi)x
i
2 ≥ b2(ξi).

Here, we used variable xi2 to indicate that Q(x1, ξi) corresponds to scenario i. Note that the
minimum value of c2(ξi)

>xi2 over xi2 satisfying A2(ξi)x1+B2(ξi)x
i
2 ≥ b2(ξi) is less than or equal to ti

if and only if there exists some xi2 satisfying A2(ξi)x1+B2(ξi)x
i
2 ≥ b2(ξi) such that c2(ξi)

>xi2 ≤ ti.
Then constraint Q(x1, ξi) ≤ ti is equivalent to the condition that there exists xi2 such that

c2(ξi)
>xi2 ≤ ti

A2(ξi)x1 +B2(ξi)x
i
2 ≥ b2(ξi).

Therefore, we obtain the following formulation.

min c>1 x1 +
∑
i∈[N ]

piti

s.t. A1x1 ≥ b1
c2(ξi)

>xi2 ≤ ti, i ∈ [N ]

A2(ξi)x1 +B2(ξi)x
i
2 ≥ b2(ξi), i ∈ [N ].
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In fact, it is not necessary to use the auxiliary variables ti for i ∈ [N ]. We can simply write

min c>1 x1 +
∑
i∈[N ]

pic2(ξi)
>xi2

s.t. A1x1 ≥ b1
A2(ξi)x1 +B2(ξi)x

i
2 ≥ b2(ξi), i ∈ [N ].

3 Two-stage optimization models with different risk measures

For the second-stage value, we considered the expectation of function Q(x, ξ). In general, we may
consider

min c>1 x1 + ρ (Q(x1, ξ1), . . . , Q(x1, ξN ))

s.t. A1x1 ≥ b1.

where ρ : RN → R is some risk measure.

3.1 Worst-case value

Consider the case when

ρ (Q(x1, ξ1), . . . , Q(x1, ξN )) = max {Q(x1, ξ1), . . . , Q(x1, ξN )} .

Then the optimization model is given by

min c>1 x1 + t

s.t. A1x1 ≥ b1
max {Q(x1, ξ1), . . . , Q(x1, ξN )} ≤ t.

This is equivalent to

min c>1 x1 + t

s.t. A1x1 ≥ b1
Q(x1, ξi) ≤ t, i ∈ [N ].

Then, by the lifting procedure,

min c>1 x1 + t

s.t. A1x1 ≥ b1
c2(ξi)

>xi2 ≤ t, i ∈ [N ]

A2(ξi)x1 +B2(ξi)x
i
2 ≥ b2(ξi), i ∈ [N ].

3.2 Conditional-value at risk

Next, we consider

min c>1 x1 + CVaRα

(
Q(x1, ξ); P̂N

)
s.t. A1x1 ≥ b1.
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The model is equivalent to

min c>1 x1 + v

s.t. A1x1 ≥ b1

CVaRα

(
Q(x1, ξ); P̂N

)
≤ v.

We may rewrite constraint CVaRα

(
Q(x1, ξ); P̂N

)
≤ v as

CVaRα

(
Q(x1, ξ)− v; P̂N

)
≤ 0.

Recall that CVaRα

(
Q(x1, ξ)− v; P̂N

)
≤ 0 is equivalent to the constraints

t+
1

1− α
∑
i∈[N ]

piri ≤ 0

r ≥ 0

t+ ri ≥ Q(x1, ξi)− v, i ∈ [N ].

Furthermore,
Q(x1, ξi) ≤ v + t+ ri

can be rewritten as

c2(ξi)
>xi2 ≤ v + t+ ri, i ∈ [N ]

A2(ξi)x1 +B2(ξi)x
i
2 ≥ b2(ξi), i ∈ [N ].

Therefore, we can replace

CVaRα

(
Q(x1, ξ); P̂N

)
≤ v

by

t+
1

1− α
∑
i∈[N ]

piri ≤ 0

r ≥ 0

c2(ξi)
>xi2 ≤ v + t+ ri, i ∈ [N ]

A2(ξi)x1 +B2(ξi)x
i
2 ≥ b2(ξi), i ∈ [N ].

Therefore, the final equivalent reformulation is

min c>1 x1 + v

s.t. A1x1 ≥ b1

t+
1

1− α
∑
i∈[N ]

piri ≤ 0

r ≥ 0

c2(ξi)
>xi2 ≤ v + t+ ri, i ∈ [N ]

A2(ξi)x1 +B2(ξi)x
i
2 ≥ b2(ξi), i ∈ [N ].
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3.3 Value at risk

Next, we consider

min c>1 x1 + VaRα

(
Q(x1, ξ); P̂N

)
s.t. A1x1 ≥ b1.

The model is equivalent to

min c>1 x1 + v

s.t. A1x1 ≥ b1

VaRα

(
Q(x1, ξ)− v; P̂N

)
≤ 0.

Recall that VaRα

(
Q(x1, ξ)− v; P̂N

)
≤ 0 is equivalent to the constraints

Q(x1, ξi)− v ≤Mzi, i ∈ [N ]∑
i∈[N ]

pizi ≤ 1− α

z ∈ {0, 1}N .

Furthermore,
Q(x1, ξi) ≤ v +Mzi

can be rewritten as

c2(ξi)
>xi2 ≤ v +Mzi, i ∈ [N ]

A2(ξi)x1 +B2(ξi)x
i
2 ≥ b2(ξi), i ∈ [N ].

Therefore, the final equivalent reformulation is

min c>1 x1 + v

s.t. A1x1 ≥ b1∑
i∈[N ]

pizi ≤ 1− α

z ∈ {0, 1}N

c2(ξi)
>xi2 ≤ v +Mzi, i ∈ [N ]

A2(ξi)x1 +B2(ξi)x
i
2 ≥ b2(ξi), i ∈ [N ].
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