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1 Outline

In this lecture, we cover

• the newsvendor problem with various risk measures,

• two-stage facility location.

2 Modeling newsvendor problem with Value at Risk

Again, we may reformulate the problem maxx f(x, ξ) as

max v

s.t. f(x, ξ) ≥ v.

This is equivalent to

max v

s.t. v − f(x, ξ) ≤ 0.

Then the corresponding value at risk is given by

VaRα

(
v − f(x, ξ); P̂N

)
= min

{
t : Pξ∼P̂N

[v − f(x, ξ) ≤ t] > α
}
.

We learned that

max v

s.t. VaRα

(
v − f(x, ξ); P̂N

)
≤ 0

can be reformulated as

max v

s.t. v − f(x, ξi) ≤Mzi, i ∈ [N ]∑
i∈[N ]

pizi ≤ 1− α

x ∈ Z+, z ∈ {0, 1}N .

Plugging in the formula f(x, ξ) = min{(p+ h)ξ − (c+ h)x, (p− c)x}, we obtain

max v

s.t. v −Mzi ≤ (p+ h)ξ − (c+ h)x, i ∈ [N ]

v −Mzi ≤ (p− c)x, i ∈ [N ]∑
i∈[N ]

pizi ≤ 1− α

x ∈ Z+, z ∈ {0, 1}N .
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3 Two-stage facility location

We revisit the facility location problem again. In particular, we consider and model the problem in
a pandemic situation. In a pandemic setting, testing the population for disease is key to managing
its spread in a city. Basically, we want to determine locations for testing facilities.

Let each suburb be indexed by j ∈ [n]. The number of people that need testing on a given day is
ξj for j ∈ [n]. We must decide where to place a limited number of testing centers, which provide
testing services. Distances between suburbs j and k are given by djk. Travel is not recommended
during a pandemic, so we want to place testing centers strategically to minimize travel.

In fact, we have an option of placing mobile testing centers at certain locations. Here, the
mobile testing centers can move to locations of high demand if needed, in order to further reduce
travel. However, these have limited capacity c.

Tesing numbers, the nubmers of people tested on a day, are uncertain, but we have estimates in
the form of scenarios. Basically, we assume that data

ξj1, . . . , ξ
j
N

recording the numbers of test cases for the past N days from suburb j.

Testing centers need to be decided

here-and-now

because they take a long time to set up. They may involve machinery to process the tests. Mobile
testing centers are quick to set up, thus we can potentially employ a

wait-and-see

approach. What time means is that we wait until we know the exact testing demand (or at least a
better estimate of it) before we decide where to set up the mobile testing centers.

The question is, how can we test the population with least travel? We want to minimize the total
expected distance travelled.

3.1 Warm-up: deterministic demand setting

To help up formulate the model with uncertainty in demand, let us try to understand the case
when we have no uncertainty. Basically, we know the value of ξj for each j ∈ [n] exactly.

Decisions. We use binary variable xj ∈ {0, 1} to indicate whether to place a testing center at
location j ∈ [n]. Similarly, we use binary variable yj ∈ {0, 1} to describe whether we build a mobile
testing center at j ∈ [n].

Moreover, we need allocation variables that tell us where people are going to get tested. For
j, k ∈ [n], we use variable zjk to capture the number of people from location j that will get tested
at a testing center or a mobile center at location k.

Objective. We minimize total travel distance. Hence, we consider

min
∑
j∈[n]

∑
k∈[n]

djkzjk.
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Constraints. First, we assume that xj , yj ∈ {0, 1} and zjk ≥ 0 for j, k ∈ [n].

Next, we assume that everyone in the population must be tested.∑
k∈[n]

zjk = ξj , j ∈ [n].

We can build at most K testing centers and at most L mobile centers.∑
j∈[n]

xj ≤ K,
∑
j∈[n]

yj ≤ L.

Most importantly, we cannot send people to a location where there is no testing center. Moreover,
a mobile testing center has a capacity of c on the number of tests. We can capture theses by a
single constraint ∑

j∈[n]

zjk ≤Mkxk + cyk, k ∈ [n]

where Mk is a big-M constant. Note that∑
j∈[n]

zjk ≤
∑
j∈[n]

∑
k∈[n]

zjk ≤
∑
j∈[n]

ξj ,

and therefore, we may set Mk as

Mk =
∑
j∈[n]

ξj .

Therefore, the resulting optimization model is given by

min
∑
j∈[n]

∑
k∈[n]

djkzjk

s.t.
∑
k∈[n]

zjk = ξj , j ∈ [n]

∑
j∈[n]

xj ≤ K,∑
j∈[n]

yj ≤ L,∑
j∈[n]

zjk ≤Mkxk + cyk, k ∈ [n]

x ∈ {0, 1}n, y ∈ {0, 1}n, z ≥ 0.

3.2 Uncertain demand case

Now we consider the case when we do not have the testing numbers ξ1, . . . , ξn exactly, but we have
access to scenarios

ξj1, . . . , ξ
j
N , j ∈ [n].
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One approach is to consider individual scenarios separately. For each scenario i ∈ [N ], we solve

min
∑
j∈[n]

∑
k∈[n]

djkz
i
jk

s.t.
∑
k∈[n]

zijk = ξji , j ∈ [n]

∑
j∈[n]

xij ≤ K,∑
j∈[n]

yij ≤ L,∑
j∈[n]

zijk ≤Mkx
i
k + cyik, k ∈ [n]

xi ∈ {0, 1}n, yi ∈ {0, 1}n, zi ≥ 0.

Let (xi, yi, zi) be an optimal solution under scenario i ∈ [N ]. Given the N solutions for N different
scenarios, how do we decide the locations of testing centers for the future? We may take their
average.

min
1

N

∑
i∈[N ]

∑
j∈[n]

∑
k∈[n]

djkz
i
jk

s.t.
∑
k∈[n]

zijk = ξji , j ∈ [n], i ∈ [N ]

∑
j∈[n]

xij ≤ K, i ∈ [N ]

∑
j∈[n]

yij ≤ L, i ∈ [N ]

∑
j∈[n]

zijk ≤Mkx
i
k + cyik, k ∈ [n], i ∈ [N ]

xi ∈ {0, 1}n, yi ∈ {0, 1}n, zi ≥ 0, i ∈ [N ].

However, it is not too trivial to determine the locations, because different scenarios suggest different
sets of locations. How do we aggregate them? More precisely, how do we choose a binary vector
x ∈ {0, 1}n based on N binary vectors x1, . . . , xN ∈ {0, 1}n? Their average is not necessarily a
binary vector, i.e.,

1

N

∑
i∈[N ]

xi 6∈ {0, 1}n.

Another approach is to use some risk measure. Based on the N scenarios, we predict that the
demand from location j is

ρ
({
ξji : i ∈ [N ]

})
.
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Then we solve

min
∑
j∈[n]

∑
k∈[n]

djkzjk

s.t.
∑
k∈[n]

zjk = ρ
({
ξji : i ∈ [N ]

})
, j ∈ [n]

∑
j∈[n]

xj ≤ K,∑
j∈[n]

yj ≤ L,∑
j∈[n]

zjk ≤Mkxk + cyk, k ∈ [n]

x ∈ {0, 1}n, y ∈ {0, 1}n, z ≥ 0.

Depending on the prediction quality of the risk measure, this can be a reasonable proxy for the
formulation under the full knowledge of demands. However, this ignores the flexibility of opening
mobile testing centers since we decide the locations of mobile centers before seeing the testing
demand.

Motivated by this, we take the so-called two-stage approach. The basic idea is as follows.

1. Decide on x, the locations of testing centers, before seeing the testing demand (using the
scenarios as information).

2. Then decide on y, the locations of mobile testing centers, after seeing the demand.

To see how to model the two-stage approach, we review the formulation given by

min
1

N

∑
i∈[N ]

∑
j∈[n]

∑
k∈[n]

djkz
i
jk

s.t.
∑
k∈[n]

zijk = ξji , j ∈ [n]

∑
j∈[n]

xij ≤ K,∑
j∈[n]

yij ≤ L,∑
j∈[n]

zijk ≤Mkx
i
k + cyik, k ∈ [n]

xi ∈ {0, 1}n, yi ∈ {0, 1}n, zi ≥ 0, i ∈ [N ].

Note that we decide x before seeing the demand. What this means is that we have the same x for
all scenarios. Hence,

x1 = · · · = xN = x.
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Plugging in this to the formaultion, we deduce

min
1

N

∑
i∈[N ]

∑
j∈[n]

∑
k∈[n]

djkz
i
jk

s.t.
∑
k∈[n]

zijk = ξji , j ∈ [n]

∑
j∈[n]

xj ≤ K,∑
j∈[n]

yij ≤ L,∑
j∈[n]

zijk ≤Mkxk + cyik, k ∈ [n]

x ∈ {0, 1}n, yi ∈ {0, 1}n, zi ≥ 0, i ∈ [N ].

Here x is called the first-stage variable, and y is called the second-stage variable.
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