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1 Outline

In this lecture, we cover

e Value at Risk (VaR),
e Conditional Value at Risk (CVaR),
e modeling with CVaR.

2 VaR and CVaR

Suppose that we have eight scenarios with equal probability. Consider a decision x with the
following outcomes.

i 1 2 3 4 5 6 7 8
pi | 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
gz, &) 100 7 5 4 3 1 0 -2

How can we judge how “risky” the decision is? Note that

e Expectation: 29.5.

e Worst-case value: 100.
However, 7 out of the 8 scenarios have values at most 7.
e What about looking at the 2nd highest value instead?

The second highest value is 7, and this perhaps better represents the risk of decision z. Consider
an alternative decision z’.

1 1 2 3 4 5 6 7 8
pi | 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
gx',&) | 20 7 5 4 3 1 0 -2

Here, the second-highest value for decision z’ is also 7. However, we know that z has a worse value
than 2’ in the worst case. Therefore, we should capture the difference between x and 2’ somehow.

e What about the average of the two highest values?

For z, we have (100 + 7)/2 = 53.5, while for 2/, we have (20 4+ 7)/2 = 13/5.
The following two risk measures essentially capture these ideas.
e Value-at-Risk (VaR): Look at Wﬁ the (k + 1)th largest value
among g(xagl)a s 7g(x>£N)

e Conditional Value-at-Risk (CVaR): Look at the average of the top k values among
g(xvgl)a s 79(5675]\/)



2.1 Risk measure 3: Value-at-Risk (VaR)

Assume that we have likelikhood weights p; for each scenario & and the distribution PN with
Pepy 6 =&l =pi, i€[N].
Fix some a € (0,1). Then the Value-at-Risk at level a or a-VaR is the risk measure defined as

VaR,, (g(:ﬁ,ﬁ);p]v) =minqt: P

— min {t : ]P)§~1;N [g(x,&) <t] > a} :

This is also referred to as the a-quantile of Py.
When p; = 1/N fori € [N] and o = 1—k/N, then VaR, (g(m,f); PN) is exactly the kthi— (k+1)th
largest value among g(z,&1),...,9(x,&N).

Example 19.1. Suppose that we have

i 1 2 3 4 5 6
pi 0.05 0.15 0.1 04 02 0.1
9(,&;) 0 8 6 3 2 =2
P p 9,8 <g(@, &) | 1 095 08 07 03 01
Then
e VaRg.gs (g(fﬁa ); Px) =10
e VaRg.95 (9(937 ); Pyn) =1 8
e VaRgss (g(l“, );Py) =8

VaRo.s (9(3375); AN) =8 — 6.

Vajo <g(x,§); p]\[) = 6 — 3.
° VaR(].ﬁ <g(x,§); pj\[) = 3.
2.2 Risk measure 4: Conditional Value-at-Risk (CVaR)

Assume that we have likelikhood weights p; for each scenario & and the distribution PN with
P py € =& =pi, i€[N].

Fix some o € (0,1). Then the Conditional Value-at-Risk at level a or a-CVaR is the risk
measure defined as

N 1
CVaR,, (g(a:,ﬁ); PN> ‘=  max 1o zi - g(z,&)
1€[N]
st. 0<z <p;, 1€[N]

Zzizl—a.

1€[N]



What is this? To compute the value of a-CVaR, we need to solve a linear program. In fact,
although it is a linear program, we can find an optimal solution by a greedy algorithm as follows.
1. Suppose that g(z,&1) > g(x,82) > -+ > g(x,&n).

2. Initialize budget =1 — a and ¢ = 1.
3. While budget > 0 do

e Set z; = min {p;, budget}.

e budget < budget — z;.

o 1+ 1.
Basically, to maximize the objective, we assign high weights to risky scenarios under the weight
limit of p; on scenario &; for i € [N].

Example 19.2. Suppose that we have

i 1 2 3 4 5 6
i 005 0.15 0.1 04 02 0.1
g(z,&) | 10 8 6 3 2 -2

Then

o CVaRgos (g(m £) PN) = (10 x 0.02)/0.02 = 10.

¢ CVaRggs5 (g(x,g); PN) — (10 x 0.05)/0.05 = 10.

o CVaRgss (g(x 6); PN) = (10 % 0.05 + 8 x 0.1)/0.15 = 8.666 - - - .
o CVaRos (g z, = (10 % 0.05 + 8 x 0.15)/0.2 = 8.5.

(z,); Py
CVaRo.7 (g(x,g); PN) = (10 X 0.05+ 8 x 0.15+ 6 x 0.1)/0.3 = 7.666 - - - .

o CVaRog (g(g;,,g);ﬁN) = (10 X 0.05 + 8 x 0.15+ 6 x 0.1 + 3 x 0.1)/0.4 = 6.5.

More formally, the greedy algorithm is described as follows.

1. Order the scenarios so that
9(x, &) = -+ > gz, &)
Note that the ordering ¢ depends on the decision .

2. Find the largest k for which
k
Zpa(i) <l-oa.
i=1

k+1

Zpa(i) >1—«
i=1

Note that

by definition.



3. Compute

0
'Eﬂ

4. Then
v

1—a’

CVaR, (g(x,f); PN> =

(l‘ gU(z (1 - Zpa (%) ) & ga(k-‘rl )

Why is it called “conditional” value-at-risk? An intuition for this is as follows. If

P§~PN {g(x,é) > VaR, (g(ﬂs,f); PN)] =1—«

then

CVaRa (9(2,€): Py ) = Egpy [9(2,€) | 9(2.€) > VaRa (9(w,€); Py )]

3 Modeling with CVaR

To model CVaR, we take the dual of the linear program. By strong duality, we have

S 1
CVaR, (g(:c,ﬁ); PN) = min t+ m Z DiTi
1€[N]
st. r>0

t+r; >g(z, &), €[N

Then it follows that A
CVaR, (g(2,€); Pv) <0

is equivalent to the constraints
t + — Z piri <0
1€[N
r>0
t+ri>g(x,&), i€[N]

Therefore, if each g(x,&;) is linearly representable, then CVaR,, (g(w,f); Py

representable. In summary,

min  f(z)
s.t. CVaR, (g(m,f);]s]v) <0
re X
is equivalent to
min  f(x)
s.t. t_|_7 Zplrl <0
ZE[N]

r>0

t+mr>g(x,&), i€][N].

4

) < 0 is also linearly
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