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1 Outline

In this lecture, we cover

• Value at Risk (VaR),

• Conditional Value at Risk (CVaR),

• modeling with CVaR.

2 VaR and CVaR

Suppose that we have eight scenarios with equal probability. Consider a decision x with the
following outcomes.

i 1 2 3 4 5 6 7 8
pi 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

g(x, ξi) 100 7 5 4 3 1 0 −2

How can we judge how “risky” the decision is? Note that

• Expectation: 29.5.

• Worst-case value: 100.

However, 7 out of the 8 scenarios have values at most 7.

• What about looking at the 2nd highest value instead?

The second highest value is 7, and this perhaps better represents the risk of decision x. Consider
an alternative decision x′.

i 1 2 3 4 5 6 7 8
pi 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

g(x′, ξi) 20 7 5 4 3 1 0 −2

Here, the second-highest value for decision x′ is also 7. However, we know that x has a worse value
than x′ in the worst case. Therefore, we should capture the difference between x and x′ somehow.

• What about the average of the two highest values?

For x, we have (100 + 7)/2 = 53.5, while for x′, we have (20 + 7)/2 = 13/5.

The following two risk measures essentially capture these ideas.

• Value-at-Risk (VaR): Look at
((((((((((((
the kth largest value→ the (k + 1)th largest value

among g(x, ξ1), . . . , g(x, ξN ).

• Conditional Value-at-Risk (CVaR): Look at the average of the top k values among
g(x, ξ1), . . . , g(x, ξN ).
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2.1 Risk measure 3: Value-at-Risk (VaR)

Assume that we have likelikhood weights pi for each scenario ξi and the distribution P̂N with

Pξ∼P̂N
[ξ = ξi] = pi, i ∈ [N ].

Fix some α ∈ (0, 1). Then the Value-at-Risk at level α or α-VaR is the risk measure defined as

VaRα

(
g(x, ξ); P̂N

)
=

(((((((((((((((((

min
{
t : Pξ∼P̂N

[g(x, ξ) ≤ t] > α
}

→ min
{
t : Pξ∼P̂N

[g(x, ξ) ≤ t]≥ α
}
.

This is also referred to as the α-quantile of P̂N .

When pi = 1/N for i ∈ [N ] and α = 1−k/N , then VaRα

(
g(x, ξ); P̂N

)
is exactly the��kth→ (k+1)th

largest value among g(x, ξ1), . . . , g(x, ξN ).

Example 19.1. Suppose that we have

i 1 2 3 4 5 6
pi 0.05 0.15 0.1 0.4 0.2 0.1

g(x, ξi) 10 8 6 3 2 −2
Pξ∼P̂N

[g(x, ξ) ≤ g(x, ξi)] 1 0.95 0.8 0.7 0.3 0.1

Then

• VaR0.98

(
g(x, ξ); P̂N

)
= 10.

• VaR0.95

(
g(x, ξ); P̂N

)
=��10→ 8.

• VaR0.85

(
g(x, ξ); P̂N

)
= 8.

• VaR0.8

(
g(x, ξ); P̂N

)
= �8→ 6.

• VaR0.7

(
g(x, ξ); P̂N

)
= �6→ 3.

• VaR0.6

(
g(x, ξ); P̂N

)
= 3.

2.2 Risk measure 4: Conditional Value-at-Risk (CVaR)

Assume that we have likelikhood weights pi for each scenario ξi and the distribution P̂N with

Pξ∼P̂N
[ξ = ξi] = pi, i ∈ [N ].

Fix some α ∈ (0, 1). Then the Conditional Value-at-Risk at level α or α-CVaR is the risk
measure defined as

CVaRα

(
g(x, ξ); P̂N

)
:= max

1

1− α

∑
i∈[N ]

zi · g(x, ξi)

s.t. 0 ≤ zi ≤ pi, i ∈ [N ]∑
i∈[N ]

zi = 1− α.
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What is this? To compute the value of α-CVaR, we need to solve a linear program. In fact,
although it is a linear program, we can find an optimal solution by a greedy algorithm as follows.

1. Suppose that g(x, ξ1) ≥ g(x, ξ2) ≥ · · · ≥ g(x, ξN ).

2. Initialize budget = 1− α and i = 1.

3. While budget > 0 do

• Set zi = min {pi, budget}.
• budget← budget− zi.

• i← i+ 1.

Basically, to maximize the objective, we assign high weights to risky scenarios under the weight
limit of pi on scenario ξi for i ∈ [N ].

Example 19.2. Suppose that we have

i 1 2 3 4 5 6
pi 0.05 0.15 0.1 0.4 0.2 0.1

g(x, ξi) 10 8 6 3 2 −2

Then

• CVaR0.98

(
g(x, ξ); P̂N

)
= (10× 0.02)/0.02 = 10.

• CVaR0.95

(
g(x, ξ); P̂N

)
= (10× 0.05)/0.05 = 10.

• CVaR0.85

(
g(x, ξ); P̂N

)
= (10× 0.05 + 8× 0.1)/0.15 = 8.666 · · · .

• CVaR0.8

(
g(x, ξ); P̂N

)
= (10× 0.05 + 8× 0.15)/0.2 = 8.5.

• CVaR0.7

(
g(x, ξ); P̂N

)
= (10× 0.05 + 8× 0.15 + 6× 0.1)/0.3 = 7.666 · · · .

• CVaR0.6

(
g(x, ξ); P̂N

)
= (10× 0.05 + 8× 0.15 + 6× 0.1 + 3× 0.1)/0.4 = 6.5.

More formally, the greedy algorithm is described as follows.

1. Order the scenarios so that

g(x, ξσ(1)) ≥ · · · ≥ g(x, ξσ(N)).

Note that the ordering σ depends on the decision x.

2. Find the largest k for which
k∑

i=1

pσ(i) ≤ 1− α.

Note that
k+1∑
i=1

pσ(i) > 1− α

by definition.
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3. Compute

V =
k∑

i=1

pσ(i) · g(x, ξσ(i)) +

(
1− α−

k∑
i=1

pσ(i)

)
g(x, ξσ(k+1)).

4. Then

CVaRα

(
g(x, ξ); P̂N

)
=

V

1− α
.

Why is it called “conditional” value-at-risk? An intuition for this is as follows. If

Pξ∼P̂N

[
g(x, ξ) > VaRα

(
g(x, ξ); P̂N

)]
= 1− α

then
CVaRα

(
g(x, ξ); P̂N

)
= Eξ∼P̂N

[
g(x, ξ) | g(x, ξ) > VaRα

(
g(x, ξ); P̂N

)]
.

3 Modeling with CVaR

To model CVaR, we take the dual of the linear program. By strong duality, we have

CVaRα

(
g(x, ξ); P̂N

)
:= min t+

1

1− α

∑
i∈[N ]

piri

s.t. r ≥ 0

t+ ri ≥ g(x, ξi), i ∈ [N ].

Then it follows that
CVaRα

(
g(x, ξ); P̂N

)
≤ 0

is equivalent to the constraints

t+
1

1− α

∑
i∈[N ]

piri ≤ 0

r ≥ 0

t+ ri ≥ g(x, ξi), i ∈ [N ].

Therefore, if each g(x, ξi) is linearly representable, then CVaRα

(
g(x, ξ); P̂N

)
≤ 0 is also linearly

representable. In summary,

min f(x)

s.t. CVaRα

(
g(x, ξ); P̂N

)
≤ 0

x ∈ X

is equivalent to

min f(x)

s.t. t+
1

1− α

∑
i∈[N ]

piri ≤ 0

r ≥ 0

t+ ri ≥ g(x, ξi), i ∈ [N ].
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